K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 12 2020

\(A=a^2+\dfrac{1}{16a^2}+b^2+\dfrac{1}{16b^2}+\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

\(A\ge2\sqrt{\dfrac{a^2}{16a^2}}+2\sqrt{\dfrac{b^2}{16b^2}}+\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\)

\(A\ge1+\dfrac{15}{32}\left(\dfrac{4}{a+b}\right)^2\ge1+\dfrac{15}{32}.4\)

 

8 tháng 7 2017

\(3=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le3\)

\(M=2\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(a+b+c\right)+\dfrac{9}{a+b+c}\)

\(=2\left[a+b+c+\dfrac{9}{a+b+c}\right]-\dfrac{9}{a+b+c}\ge2.\sqrt{9}-\dfrac{9}{3}=6-3=3\)Min = 3 khi a=b=c =1

17 tháng 7 2017

mk cx ra luôn luk đấy giống bạn cảm ơn bạn nhiều nha !

eoeo

5 tháng 7 2018

Bài 1:

Ta có: \(M=4x^2-3x+\dfrac{1}{4x}+2011=4x^2-4x+1+x+\dfrac{1}{4x}+2010\)

\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)

\(=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có:

\(x+\dfrac{1}{4x}\ge2\sqrt{x.\dfrac{1}{4x}}=2\sqrt{\dfrac{1}{4}}=1\)

Suy ra: \(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)

Vậy: \(Min_M=2011\Leftrightarrow x=\dfrac{1}{2}\)

Bài 2: Tham khảo: với hai số thực không âm a, b thỏa a2 + b2 = 4, tìm giá trị lớn nhất của biểu thức M= ab /(a+b+2) | Câu hỏi ôn tập thi vào lớp 10

15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

25 tháng 4 2018

Tớ chưa học bđt Cauchy-Schwwarz và hệ quả AM-GM thì sao?

10 tháng 5 2018

\(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\)

\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 1:

\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)

\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT Cô-si:

\(\frac{x}{y}+\frac{y}{x}\geq 2\)

\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)

Áp dụng BĐT SVac-xơ kết hợp với Cô-si:

\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Cộng các BĐT trên :

\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)

Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)

AH
Akai Haruma
Giáo viên
10 tháng 7 2018

Bài 2:

Áp dụng BĐT Svac-xơ:

\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)

\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)

Cộng theo vế và rút gọn :

\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

\(a^2+b^2\geq 2ab\)

\(\Rightarrow \left\{\begin{matrix} 2(a^2+b^2)\geq a^2+b^2+2ab\\ a^2+b^2+2ab\geq 4ab\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} 2(a^2+b^2)\geq (a+b)^2\\ (a+b)^2\geq 4ab\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} 2(a^2+b^2)\geq 4\\ 4\geq 4ab\end{matrix}\right.\Rightarrow a^2+b^2\geq 2; ab\leq 1\)

\(\Rightarrow a^2+b^2\geq 2; \frac{1}{ab}\geq 1\)

\(\Rightarrow P\geq 2+1=3\)

Vậy $P_{\min}=3$ khi $a=b=1$

30 tháng 5 2018

UCT. Chứng minh \(2a+\frac{1}{a}\ge\frac{a^2+5}{2}\) với \(0< a^2;b^2;c^2< \sqrt{3}\)

Tương tự cộng lại là xong

29 tháng 5 2018

Theo bất đẳng thức Cauchy, ta có:

\(a+\frac{1}{a}\ge2\)và \(b+\frac{1}{b}\ge2\)và \(c+\frac{1}{c}\ge2\)

\(\Rightarrow P\ge a+b+c+6\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)( thỏa đề bài)

\(\Leftrightarrow minP=1+1+1+6=9\)

Câu a dùng hằng đẳng thức mở rộng là được,tối rồi lười lắm,t giúp câu b

20 tháng 5 2018

giúp t câu b với