K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a.

\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)

\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)

b.

$C(x)=4x-1=0$

$\Rightarrow x=\frac{1}{4}$

Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$

c.

\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)

\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)

\(=4x^3-6x^2-6x+3\)

12 tháng 4 2022

f (x) = 3x2 + 2x3 - 6x - 2

bậc của đa thức là: 3

 

g(x) = 5x+ 9 - 2x3 - 3x2 - 4x + 2x3 - 2

g(x) = ( 5x2 - 3x) + ( 9 -2) + ( - 2x+ 2x) - 4x

g(x) = 2x2 + 7 - 4x

bậc của đa thức là : 2

Ta có: \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow2x^3-7x^2+5x+1⋮2x-1\)

\(\Leftrightarrow2x^3-x^2-6x^2+3x+2x-1+2⋮2x-1\)

\(\Leftrightarrow2⋮2x-1\)

\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow2x\in\left\{2;0;3;-1\right\}\)

hay \(x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2}\right\}\)

6 tháng 1 2021

\(2x^3-3x^2+x+a=\left(x+2\right)\left(2x^2-7x+15\right)+\left(a-30\right)=Q\left(x\right).\left(x+2\right)\)

=> x=-2 thì \(2.\left(-2\right)^2-3\left(-2\right)^2+\left(-2\right)+a=Q\left(x\right).0=0\)

<=> -16 -12 -2 +a =0

<=> a -30 =0

=> a= 30.

28 tháng 4 2017

Thực hiện phép chia:

Giải bài 74 trang 32 Toán 8 Tập 1 | Giải bài tập Toán 8

2x3 – 3x2 + x + a chia hết cho x + 2

⇔ số dư = a – 30 = 0

⇔ a = 30.

Cách 2: Phân tích 2x3 – 3x2 + x + a thành nhân tử có chứa x + 2.

2x3 – 3x2 + x + a

= 2x3 + 4x2 – 7x2 – 14x + 15x + 30 + a – 30

(Tách -3x2 = 4x2 – 7x2; x = -14x + 15x)

= 2x2(x + 2) – 7x(x + 2) + 15(x + 2) + a – 30

= (2x2 – 7x + 15)(x + 2) + a – 30

2x3 – 3x2 + x + a chia hết cho x + 2 ⇔ a – 30 = 0 ⇔ a = 30.

5 tháng 8 2023

Số dư của phép chia đa thức \(\text{f( x ) = 2x^3 - 3x^2 + x + a}\) cho \(\text{x + 2}\) là

\(\text{f ( -2 ) = 2(-2) ^3 - 3 (-2 )^2 + ( - 2 ) + a = -30 + a}\)

Để phép chia là chia hết thì số dư bằng \(\text{0}\)

Hay \(\text{-30 + a = 0}\) \(\Rightarrow\) \(\text{a = 30}\)

 

5 tháng 8 2023

a = 30

a)P(x) = 7x3 - x2 + 5x - 2x3 +6 - 8x

=5x^3-x^2-3x+6

 Q(x) = -2x + x3 - 4x2 + 3 - 5x2

=x^3-9x^2-2x+3

b)

P(x) - Q(x)=4^3+8x^2-x-3

P(x) + Q(x)=6^3-10x^2-5x+9

9 tháng 5 2018

Đa thức \(f\left(x\right)=2x^3-3x^2+x+a\)    chia hết cho đa thức  \(x+2\)

\(\Leftrightarrow\)\(f\left(-2\right)=0\)

\(\Leftrightarrow\)\(2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a=0\)

\(\Leftrightarrow\)\(-30+a=0\)

\(\Leftrightarrow\)\(a=30\)

Vậy  \(a=30\)thì   \(2x^3-3x^2+x+a\)chia hết cho  \(x+2\)

p/s:  bn có thế lm theo cách truyền thống:  đặt tính chia ra rồi đặt dư = 0 và tìm a

      hoặc dùng hệ số bất định 

9 tháng 5 2018

2x^3-3x^2+x+a  |  x+2

------------------|-------------

2x^3-3x^2        | 2x^2-7x+15

2x^2+4x^2

      -7x^2+x

      -7x^2-14x

            15x+a

            15x+30

\(2x^3-3x^2+x+a\div x+2\)

Để đa thức \(2x^3+3x^2+x+a⋮x+2\)

\(\Rightarrow15x+a=15x+30\)

\(\Rightarrow a-30=0\Rightarrow a=30\)

11 tháng 2 2019

Đặt và thực hiện phép tính ta có :

Giải bài tập Toán lớp 7

Vậy chọn đa thức thứ hai.