K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

ta có 2x =7+x

->2x+x =7

->3x =7

->x =7/3

vậy x =7/3

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

5 tháng 6 2020

(x - 1)(2x² - 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x^2-10=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{1;\sqrt{5}\right\}\)
(2x - 7)2 - 6(2x - 7)(x - 3) = 0

\(\Leftrightarrow\left(2x-7\right)\left(2x-7-6x+18\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(11-4x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=7\\4x=11\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: \(S=\left\{\frac{7}{2};\frac{11}{4}\right\}\)
(5x + 3)(x2 + 4) = 0

\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-3\\x^2=-4\left(Loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{3}{5}\)

Vậy phương trình có tập nghiệm là: \(S=\left\{-\frac{3}{5}\right\}\)

5 tháng 6 2020

a)

\(\left(x-1\right)\cdot\left(2x^2-10\right)=0\\ \Leftrightarrow\left(x-1\right)\cdot2\cdot\left(x^2-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{5}\end{matrix}\right.\)

b)

\(\left(2x-7\right)^2-6\cdot\left(6x-7\right)\cdot\left(x-3\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left[\left(2x-7\right)-6\cdot\left(x-3\right)\right]=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(2x-7-6x+18\right)=0\\ \Leftrightarrow\left(2x-7\right)\cdot\left(11-4x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-7=0\\11-4x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=\frac{11}{4}\end{matrix}\right.\)

c)

\(\left(5x+3\right)\cdot\left(x^2+4\right)=0\)

\(\left(x^2+4\right)>0\Rightarrow\left(loại\right)\)

\(\Rightarrow5x+3=0\\ \Rightarrow x=-\frac{3}{5}\)

19 tháng 4 2020

c)

\(x^2-x-12=0\\ \Leftrightarrow x^2+3x-4x-12=0\\ \Leftrightarrow x\cdot\left(x+3\right)-4\cdot\left(x+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

e)

\(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\\ \Leftrightarrow\frac{6x^2+40x+66}{x^2+5x+6}-\frac{2x^2+11x+14}{x^2+5x+6}-\frac{x+4}{x^2+5x+6}=0\\ \Leftrightarrow6x^2+40x+66-2x^2-11x-14-x-4=0\\ \Leftrightarrow4x^2+28x+48=0\\ \Leftrightarrow4\cdot\left(x^2+7x+12\right)=0\\ \Leftrightarrow4\cdot\left(x^4+4x+3x+12\right)=0\\ \Leftrightarrow4\cdot\left[x\cdot\left(x+4\right)+3\cdot\left(x+4\right)\right]=0\\ \Leftrightarrow4\cdot\left(x+4\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+4=0\\x+3=0\end{matrix}\right.\Rightarrow}\left\{{}\begin{matrix}x=-4\\x=-3\end{matrix}\right.\)

19 tháng 4 2020

b)

\(\frac{4x}{x^2+4x+3}-1=6\cdot\left(\frac{1}{x+3}-\frac{1}{2x+2}\right)\\ \Leftrightarrow\frac{4x}{\left(x+1\right)\cdot\left(x+3\right)}-1=6\cdot\left(\frac{1}{x+3}-\frac{1}{2\cdot\left(x+1\right)}\right)\\ \Leftrightarrow4x-\left(x+1\right)\cdot\left(x+3\right)=6\cdot\left(\frac{1}{x+3}-\frac{1}{2\cdot\left(x+2\right)}\right)\cdot\left(x+1\right)\cdot\left(x+3\right)\\ \Leftrightarrow-x^2-3=\frac{6x^2}{x+3}+\frac{24x}{x+3}+\frac{18}{x+3}-\frac{3x^2}{x+1}-\frac{12x}{x+1}-\frac{9}{x++1}\\ \Leftrightarrow-x^2\cdot\left(x+3\right)\cdot\left(x+1\right)-3\cdot\left(x+3\right)\cdot\left(x+1\right)=6x^2\cdot\left(x+1\right)+24x\cdot\left(x+1\right)+18\cdot\left(x+1\right)-3x^2\cdot\left(x+3\right)-12x\cdot\left(x+3\right)-9\cdot\left(x+3\right)\\ \Leftrightarrow-x^4-4x^3-6x^2-12x-9=3x^3+9x^2-3x-9\\ \Leftrightarrow-x^4-4x^3-6x^2-12x=3x^3+9x^2-3x\\ \Leftrightarrow x^4+4x^3+6x^2+12x+3x^3+9x^2-3x=0\\ \Leftrightarrow x^4+7x^3+15x^2+9x=0\\ \Leftrightarrow x\cdot\left(x^3+7x^2+15x+9\right)=0\\ \Leftrightarrow x\cdot\left(x^2+6x+9\right)\cdot\left(x+1\right)=0\\ \Leftrightarrow x\cdot\left(x+3\right)^2\cdot\left(x+1\right)=0\)

\(\Rightarrow x=\left[{}\begin{matrix}0\\-3\\-1\end{matrix}\right.\)

15 tháng 3 2022

\(5x-4\left(6x+18-x^2-3x\right)=\left(12-8x-6x+4x^2\right)+2\)

\(\Leftrightarrow5x-4\left(-x^2+3x+18\right)=\left(4x^2-14x+12\right)+2\)

\(\Leftrightarrow4x^2-7x-72=4x^2-14x+14\Leftrightarrow7x=86\Leftrightarrow x=\dfrac{86}{7}\)

8 tháng 2 2023

kh hiểu bn ơi

8 tháng 2 2023

vậy mik đăng lại

1 tháng 5 2017

a, 3y-2y=2y-3

    3y-2y-2y=3

    -y=3

     y=-3

b, 3-4x+24+6x=x+27+3x

   -4x+6x-x-3x =27-3-24

   -2x              =0

      x             =0

  

1 tháng 5 2017

c, 5-(6-x)=4.(3-2x)

   5-6+x =12-8x

   x+8x  =12+6-5

  9x      =13

   x       =13/9

d, 4.(x+3)=-7x+17

   4x+12  =-7x+17

4x+7x     =17-12

11x         =5

  x          =5/11

1) Ta có: 3x-12=5x(x-4)

\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3x-12-5x^2+20x=0\)

\(\Leftrightarrow-5x^2+23x-12=0\)

\(\Leftrightarrow-5x^2+20x+3x-12=0\)

\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)

\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)

\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)

\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)

2) Ta có: 3x-15=2x(x-5)

\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)

\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)

3) Ta có: 3x(2x-3)+2(2x-3)=0

\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)

4) Ta có: (4x-6)(3-3x)=0

\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)

10 tháng 2 2020

4) (4x - 6 ) ( 3 - 3x ) = 0

<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)