bài 2:cho tam giác ABC.Hai đường cao kể từ B và C cắt nhau tại H.Biết AC=BH.Tính góc ABC.
GIÚP MÌNH NHÉ CÁC BẠN!!1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vũ Thùy Linh
EM CHỊU KHÓ GÕ LINK NÀY LÊN GOOGLE
https://h.vn/hoi-dap/question/571023.html
chúc em học tốt
Bạn tự vẽ hình
Gọi BD và CE là hai đường cao của tam giác ABC
Xét \(\Delta EBH\)và \(\Delta ECA\)có \(\widehat{BEH}=\widehat{CEA};BH=AC\left(gt\right);\widehat{BHE}=\widehat{CAE}\)(cùng phụ \(\widehat{ABH}\))
\(\Rightarrow\Delta EBH=\Delta ECA\left(ch-gn\right)\Rightarrow EB=EC\Rightarrow\Delta EBC\)cân tại E, mà \(\Delta EBC\)vuông tại E
\(\Rightarrow\Delta EBC\)vuông cân tại E\(\Rightarrow\widehat{ABC}=45^o\)
Bài 1:
+ ΔABC có Aˆ+ABCˆ+ACBˆ=180o. hay 60o+ABCˆ+ACBˆ=180o→ABCˆ+ACBˆ=120o
→ABCˆ+ACBˆ2=60o=ABCˆ2+ACBˆ2=B1ˆ+C1ˆ
+ Gọi CN∩BM=G
+ Δ có B1ˆ+C1ˆ+BGCˆ=180o. Hay 60o+BGCˆ=180o→BGCˆ=120o
+ Gọi GD là tia phân giác BGCˆ→G2ˆ=G3ˆ=60o
+ Tính G1ˆ=G4ˆ=G2ˆ=G3ˆ=60o
+ CM ΔNGB=ΔDGB (gcg) →BN=DB (2 cạnh tương ứng)
+CM ΔMGC=ΔDGC(gcg) →CM=CD (2 cạnh tương ứng)
+ Ta có BC=BD+CD=BN+CM (đpcm)
Ta có: BD⊥AB , DC⊥AC
Mà CH cũng ⊥ AB
=> CH//BD (1)
H là trực tâm ( giao điểm 2 hoặc 3 đường cao)
=> BH ⊥ AC
=> BH // DC (2)
Từ 1,2 => DBHC là hbh
a: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
b: Xét ΔAIC vuông tại I và ΔAKB vuông tại K có
\(\widehat{A}\) chung
Do đó: ΔAIC\(\sim\)ΔAKB
Suy ra: \(\dfrac{AI}{AK}=\dfrac{AC}{AB}\)
hay \(AI\cdot AB=AK\cdot AC\)
Bài 1)
Vì HC \(\perp\)AB
DB \(\perp\)AB
=> HC // DB (1) ( Từ vuông góc đến song song)
Vì HB \(\perp\)AC
DC\(\perp\)AC
=> HB//DC(2) ( Từ vuông góc đến song song)
Từ (1) và (2) => BHCD là hình bình hành
Làm thì có đc t.i.c.k ko bn
C
CÓ LẼ LÀ CÓ