\(\frac{2-x}{2015}+\frac{3-x}{1007}+\frac{4-x}{671}=\frac{2005-x}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1-x}{2015}+\frac{2-x}{1007}+\frac{3-x}{671}=\frac{1992-x}{4}\)
\(\Rightarrow\frac{1-x}{2015}+1+\frac{2-x}{1007}+2+\frac{3-x}{671}+3=\frac{1992-x}{4}+6\)
\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}=\frac{2016-x}{4}\)
\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}-\frac{2016-x}{4}=0\)
\(\Rightarrow\left(2016-x\right)\left(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\right)=0\)
\(\Rightarrow2016-x=0\).Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\ne0\)
\(\Rightarrow x=2016\)
\(\frac{1-x}{2015}+\frac{2-x}{1007}+\frac{3-x}{671}=\frac{1992-x}{4}\)
\(\left(\frac{1-x}{2015}+1\right)+\left(\frac{2-x}{1007}+2\right)+\left(\frac{3-x}{671}+3\right)=\frac{1992-x}{4}+6\)
\(\left(\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}\right)=\frac{2016-x}{4}\)
\(\Leftrightarrow\left(2016×x\right)×\left(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\right)=0\)
Vì\(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\ne0\)
\(\Rightarrow2016-x=0\)
\(\Rightarrow x=2016\)
Chúc bạn học tốt!
\(\frac{x+2}{2017}+\frac{x+3}{2016}+\frac{x+4}{2015}+\frac{x+5}{1007}+\frac{x+2074}{11}=0\)
\(\Leftrightarrow\frac{x+2}{2017}+1+\frac{x+3}{2016}+1+\frac{x+4}{2015}+1+\frac{x+5}{1007}+2+\frac{x+2074}{11}-5=0\)
\(\Leftrightarrow\frac{x+2019}{2017}+\frac{x+2019}{2016}+\frac{x+2019}{2015}+\frac{x+2019}{1007}+\frac{x+2019}{11}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)=0\)
\(\Leftrightarrow\left(x+2019\right)=0vì\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)\ne0\)
\(\Leftrightarrow x=-2019\)
a, Làm
\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)
<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)
<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
<=> x+2021=0
<=> x=-2021
Kl:......................
b, Làmmmmm
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)
<=> x=2006
Kl:..............
Bài giải
\(\frac{2-x}{2015}+\frac{3-x}{1007}+\frac{4-x}{671}=\frac{2005-x}{2}\)
\(( \frac{2-x}{2015}+1 )+ (\frac{3-x}{1007}+2 )+ ( \frac{4-x}{671}+3 )=\frac{2005-x}{2}+6\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}=\frac{2017-x}{2}\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}-\frac{2017-x}{2}=0\)
\((2017-x)(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2})=0\)
Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2}\ne0\)
\(\Rightarrow\text{ }2017-x=0\)
\(\Rightarrow\text{ }x=2017\)