Từ một điểm M nằm bên ngoài (O), vẽ tiếp tuyến MA, cát tuyến MCB ( C nằm giữa M và B). Gọi N là điểm chính giữa của cung CB không chứa điểm A, AN cắt CB tại D. Chứng minh rằng
a) MA = MB
b)MA^2 = MC.MB
c)NB^2= NA.ND
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét $(O)$ có: $\widehat{MCA}=\widehat{CBA}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $CA$)
hay $\widehat{MCA}=\widehat{MBC}$
Xét $ΔMCA$ và $ΔMBC$ có:
$\widehat{MCA}=\widehat{MBC}$
$\widehat{M}$ chung
$⇒ΔMCA \backsim ΔMBC(g.g)$
\(\Rightarrow\dfrac{MC}{MB}=\dfrac{MA}{MC}\Rightarrow MC^2=MA.MB\)
b, Xét $(O)$ có: $MC$ là tiếp tuyến của đường tròn
\(\Rightarrow MC\perp OC\)
hay $ΔMCO$ vuông tại $C$
có: đường cao $MH$
nên $MC^2=MH.MO$ (hệ thức lượng trong tam giác vuông)
Mà $MC^2=MA.MB$ nên $MA.MB=MH.MO$
suy ra \(\Rightarrow\dfrac{MA}{MO}=\dfrac{MH}{MB}\)
$\widehat{M}$ chung
Nên $ΔMAH \backsim ΔMOB(c.g.c)$
nên $\widehat{MHA}=\widehat{MBO}$
hay $\widehat{MHA}=\widehat{ABO}$
suy ra tứ giác $AHOB$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)
1: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc ABB
=>ME*MO=MA^2
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
a. Ta có ON cắt BC tại I, I là trung điểm của BC, ON là bán kính ⇒ ON ⊥ BC tại I.
Xét △OCI và △OBI :
\(\hat{OIC}=\hat{OIB}=90^o\left(cmt\right)\)
\(IC=IB\left(gt\right)\)
OI chung.
\(\Rightarrow\Delta OCI=\Delta OBI\left(c.g.c\right)\)
⇒ \(\hat{IOC}=\hat{IOB}\) hay : \(\hat{NOC}=\hat{NOB}\Rightarrow\stackrel\frown{NC}=\stackrel\frown{NB}\)
Mà : \(\hat{NAB}\) hay \(\hat{DAB}\) nội tiếp chắn cung NB, \(\hat{NAC}\) hay \(\hat{DAC}\) nội tiếp chắn cung NC.
Vậy : \(\hat{DAC}=\hat{DAB}\) hay AD là phân giác của góc BAC.
b. \(\hat{MAB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc tạo bởi tia tiếp tuyến và dây cung).
\(\hat{ACB}=\dfrac{1}{2}sđ\stackrel\frown{AB}\) (góc nội tiếp chắn cung AB).
\(\Rightarrow\hat{MAB}=\hat{ACB}\Leftrightarrow\hat{MAB}=\hat{ACM}\)
Xét △MAB và △MCA :
\(\hat{MAB}=\hat{ACM}\left(cmt\right)\)
\(\hat{M}\) chung
\(=> \Delta MAB \backsim \Delta MCA (g.g)\) \(\Rightarrow\dfrac{MA}{MC}=\dfrac{MB}{MA}\Leftrightarrow MA^2=MB.MC\left(a\right)\)
Mặt khác : \(\hat{DAB}=\hat{DAC}\left(cmt\right)\) và \(\hat{DCA}=\hat{MAB}\left(cmt\right)\)
Mà \(\hat{ADM}=\hat{DAC}+\hat{DCA}\) (tính chất góc ngoài của tam giác).
\(\Rightarrow\hat{ADM}=\hat{DAB}+\hat{MAB}\Leftrightarrow\hat{ADM}=\hat{MAD}\)
⇒ △ADM cân tại M ⇒ \(MA=MD\left(b\right)\)
Từ (a), (b) : Vậy : \(MD^2=MB.MC\left(đpcm\right)\)
a) Ta có
OA vg góc vs MA (gt) => góc MAO = 90 độ
OB vg góc vs MB (gt) => góc MBO = 90 độ
Tứ giác MAOB có góc MAO + góc MBO = 90 + 90 = 180 độ
=> MAOB nội tiếp
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC=OM^2-R^2
b: Xét (O) co
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng vơi ΔMDO
=>góc MHC=góc MDO
=>góc ODC+góc OHC=180 độ
=>OHCD nội tiếp