tìm giá trị nhỏ nhất của bt /x-3/+/4+x/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : Ix-3I+I4+xI
biết : Ix-3I \(\ge\)0
I4+xI \(\ge0\)
=) 2 TH :
TH 1 : I4+xI = 0 với x = -4 =) Ix-3I = 7
=) 4+x = 0
=) x = 0 - 4 = -4
=) A = 7
TH 2 : Ix-3I = 0 với x = 3 thì =) I4+xI = 7
=) x = 0 + 3 = 3
Xét : TH 1 = TH 2
=) để A có giá trị nhỏ nhất thì \(x\in\left\{-4;3\right\}\)
đăng kí kênh của V-I-S nha !
y>0 với mọi x suy ra 2x^2y-xy+4y=x^2+2x+3>>>(2y-1)x^2-(y-2)x+(4y-3)=0(1)
Xét 2y-1=0 suy ra y=1/2 suy ra x=2/3(1)
Xét 2y-1 khác 0 pt trơ thành pt bậc 2 ẩn x suy ra delta=(y-2)^2-4(4y-3)(2y-1)>=0
suy ra 31y^2-36y+8<=0 rồi tìm được khoảng của y rồi so sánh với (1) là y=1/2 ta sẽ có GTLN và GTNN của y
Mik ko chắc mik trình bày có đúng ko
a) A= |x+3|-3
Vì |x+3| lớn hơn hoặc bằng 0 với mọi x
nên |x+3|+4 >= 4
Dấu = xảy ra khi |x+3|=0 hay x+3=0 => x=-3
Vậy GTNN của A là 4 khi x=-3
b) B= |x-1|-3
Vì |x-1| lớn hơn hoặc bằng 0 với mọi x
nên |x+-1|-3 >= -3
Dấu = xảy ra khi |x-1|=0 hay x-1=0 => x=1
Vậy GTNN của B là -3 khi x=1
CẢM ƠN BẠN NHIỀU! BẠN CÓ THỂ LÀ GIÚP MÌNH BÀI TÌM GTLN ko?
P=((x-1)*(x-6))*((x-3)*(x-4))+5
=(\(x^2-7x+6\))*(x^2-7x+12)+5
đặt t=\(x^2-7x+9\)
suy ra P=(t+3)*(t-3)+5
=t^2-4
vậy min P=-4
a)\(\left|x-5\right|-x=3\)
\(TH1:x-5-x=3\)
\(-5=3\)(ko xảy ra)
\(xkoTM\)
\(TH2:-\left(x-5\right)-x=3\)
\(5-x-x=3\)
\(5-2x=3\)
\(2x=2\)
x=1
Vậy x=1
a, \(A=\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
Dấu "=" xảy ra khi \(\left(x-1\right)\left(2-x\right)\ge0\Leftrightarrow1\le x\le2\)
Vậy GTNN của A = 1 khi \(1\le x\le2\)
b, \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left(\left|x-1\right|+\left|x-3\right|\right)+\left|x-2\right|\)
Ta có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)
Mà \(\left|x-2\right|\ge0\)
\(\Rightarrow B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left|x-2\right|\ge0\end{cases}\Rightarrow x=2}\)
Vậy GTNN của B = 2 khi x = 2
c, \(C=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(=\left(\left|x-1\right|+\left|3-x\right|\right)+\left(\left|x-2\right|+\left|4-x\right|\right)\)
\(\ge\left|x-1+3-x\right|+\left|x-2+4-x\right|\)
\(\ge2+2=4\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Rightarrow}2\le x\le}3\)
Vậy GTNN của C = 4 khi \(2\le x\le3\)
giúp mik với
Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu "=" khi \(ab\ge0\)