Tìm giá trị nhỏ nhất của các số tự nhiên a, b, c thỏa mãn:
a+(a+1)+(a+2)+...+(a+6)
=b+(b+1)+(b+2)+...+(b+8)
=c+(c+1)+(c+2)+...+(c+10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
a + (a+1)+(a+2)+...+(a+6) = b + (b+1)+(b+2)+...+(b+8) = c + (c+1)+(c+2)+...+(c+10) = n
=> 7a + 21 = 9b + 36 = 11c + 55 = n
=> 7(a+3) = 9(b+4) = 11(c+5) = n
Vì a,b,c là các số tự nhiên nên a + 3 , b+4 , c+5 là các số tự nhiên
=> n chia hết cho 7 , 9, 11
Để a,b,c nhỏ nhất
=> n nhỏ nhất
=> n thuộc BCNN(7,9,11)
=> n = 693
Khi đó:
7a + 21 = 9b + 36 = 11c + 55 = 693
Vì 7a + 21 = 693
=> 7a = 672
=>a = 96
Vì 9b + 36 = 693
=>9b = 657
=> b = 73
Vì 11c + 55 = 693
=> 11c = 638
=> c = 58
Vậy a = 96, b = 73, c = 58
Đặt :
a + (a+1)+(a+2)+...+(a+6) = b + (b+1)+(b+2)+...+(b+8) = c + (c+1)+(c+2)+...+(c+10) = n
=> 7a + 21 = 9b + 36 = 11c + 55 = n
=> 7(a+3) = 9(b+4) = 11(c+5) = n
Vì a,b,c là các số tự nhiên nên a + 3 , b+4 , c+5 là các số tự nhiên
=> n chia hết cho 7 , 9, 11
Để a,b,c nhỏ nhất
=> n nhỏ nhất
=> n thuộc BCNN(7,9,11)
=> n = 693
Khi đó:
7a + 21 = 9b + 36 = 11c + 55 = 693
Vì 7a + 21 = 693
=> 7a = 672
=>a = 96
Vì 9b + 36 = 693
=>9b = 657
=> b = 73
Vì 11c + 55 = 693
=> 11c = 638
=> c = 58
Vậy a = 96, b = 73, c = 58
hok tốt!!