K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Đáp án A.

Tọa độ điểm M 2 ; − 1 ; 1  trên mặt phẳng (Oxy) là M ' 2 ; − 1 ; 0 .

 

7 tháng 10 2017

Đáp án C

Do chiếu xuống (Oxy) nên z=0  x,y giữ nguyên.

1 tháng 6 2018

Đáp án C

Hình chiếu vuông góc của M(2;-1;4) lên mặt phẳng (Oxy)  điểm H(2;-1;0).

gọi Pt đường thảng .....y=ax+b(d)

d đi qua M(-1,1)   1=-a+b⇔b=a+1

gọi d cắt Ox tại \(A\left(-\dfrac{b}{a},O\right)\)

d cắt Oy tại \(B\left(O,b\right)\)

\(\Delta AOB\) vuông cân tại o

\(\Rightarrow OA=OB\Rightarrow\left(-\dfrac{b}{a}\right)^2+o^2=o^2+b^2\)

\(\dfrac{b^2}{a^2}=b^2\Leftrightarrow\dfrac{1}{a^2}=1\Leftrightarrow a^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}b=2\\b=0\left(loại\right)\end{matrix}\right.\)

(do d cắt 2 trục tọa độ nên a,b≠0)

vậy PtT đg thảng d:y=x+2

NV
18 tháng 8 2021

Gọi pt đường thẳng có dạng \(y=ax+b\)

Đường thẳng qua M tạo 2 trục tọa độ 1 tam giác vuông cân khi nó có hệ số góc \(a=1\) hoặc \(a=-1\)

\(\Rightarrow\left[{}\begin{matrix}y=x+b\\y=-x+b\end{matrix}\right.\)

Thay tọa độ M vào phương trình ta được:

\(\left[{}\begin{matrix}1=-1+b\\1=-\left(-1\right)+b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}b=2\\b=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y=x+2\\y=-x\end{matrix}\right.\)

7 tháng 6 2018

5 tháng 7 2019

Đáp án A

Hình chiếu vuông góc của điểm M(x;y;z) trên mặt phẳng (Oxy) M'(x;y;0)

Cách giải: Hình chiếu vuông góc của A(3;2;-1) trên mặt phẳng  (Oxy) là điểm  H(3;2;0)

30 tháng 8 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi M’, M’’, M’’’ lần lượt là hình chiếu vuông góc của điểm M trên các mặt phẳng (Oxy), (Oyz), (Ozx).

Ta có:

     • M’( x 0 ;  y 0 ; 0)

     • M’’ (0;  y 0 ;  z 0 )

     • M’’’( x 0 ; 0;  z 0 )

6 tháng 4 2016

Giả sử tọa độ M(x;0). Khi đó \(\overrightarrow{MA}=\left(1-x;2\right);\overrightarrow{MB}=\left(4-x;3\right)\)

Theo giả thiết ta có \(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos45^0\)

\(\Leftrightarrow\left(1-x\right)\left(4-x\right)+6=\sqrt{\left(1-x\right)^2+4}.\sqrt{\left(4-x\right)^2+9}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow x^2-5x+10=\sqrt{x^2-2x+5}.\sqrt{x^2-8x+25}.\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow2\left(x^2-5x+10\right)^2=\left(x^2-5x+10\right)\left(x^2-8x+25\right)\) (do \(x^2-5x+10>0\))

\(\Leftrightarrow x^4-10x^3+44x^2-110x+75=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-4x+15\right)=0\)

\(\Leftrightarrow x=1;x=5\)

Vậy ta có 2 điểm cần tìm là M(1;0) hoặc M(5;0)