Tìm giá trị nhỏ nhất của biểu thức :S=19-6x/2x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
1. Tìm giá trị nhỏ nhất của biểu thức P= 2x2 - 6x
2. Tìm giá trị lớn nhất của biểu thức E=4x - x2 + 3
ta có
P = 2x^2 - 6x
= 2( x^2 - 3x + 9/4) - 9/4
= 2( x-3/2)^2 - 9/4
nhận xét 2(x-3/2)^2 >=0
=> 2(x-3/2)^2 - 9/4 >=-9/4
dấu = xảy ra khi và chỉ khi
x- 3/2 = 0
=> x= 3/2
4x - x^2 + 3
= -x^2 + 4x - 4 +7
= -(x^2 - 4x + 4) + 7
= -(x-2)^2 + 7
nhận xét -(x-2)^2 <=0
=> -(x-2)^2 + 7 <=7
đấu = xảy ra khi và chỉ khi
x-2 = 0
=> x= 2
a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)
\(=-\left(x+1\right)^2+4\le4\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN là 4 khi x = -1
b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)
\(=-\left(2x-1\right)^2-2\le-2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTLN B là -2 khi x = 1/2
c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)
\(=-\left(x-1\right)^2-14\le-14\)
Vâỵ GTLN C là -14 khi x = 1
Bài 8 :
b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 3
Vậy GTNN B là 2 khi x = 3
c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu ''='' xảy ra khi x = 1/2
Vậy ...
c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)
Dấu ''='' xảy ra khi x = 6
Vậy ...
A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 1
=> MinA = 8 <=> x = 1
B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x
Dấu "=" xảy ra khi x = -3
=> MinB = -12 <=> x = -3
C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x
Dấu "=" xảy ra khi x = 2
=> MinC = 8 <=> x = 2
D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x
Dấu "=" xảy ra khi x = -2
=> MaxD = 11 <=> x = -2
2x^2-6x+1
\(=2\left(x^2-3x+\frac{1}{2}\right)\)
\(=2\left(x^2-3x+\frac{9}{4}\right)-\frac{7}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{7}{2}\ge0-\frac{7}{2}=-\frac{7}{2}\)
Dấu = khi 2(x-3/2)2=0 <=>x=3/2
Vậy Hmin=7/2 khi x=3/2
\(2x^2-6x+1=2\left(x^2-3x+\frac{1}{2}\right)\)
\(=2\left[x^2+2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+\frac{1}{2}\right]\)
\(=2\left[\left(x+\frac{3}{2}\right)^2-\frac{7}{4}\right]\)
\(=2\left(x+\frac{3}{2}\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)
Vậy Min đề = -7/2 khi x + 3/2 = 0 => x = -3/2
\(S=\frac{19-6x}{2x-3}=\frac{-3\left(2x-3\right)+10}{2x-3}\)
\(=-3+\frac{10}{2x-3}\)
Để S min thì \(\frac{10}{2x-3}\)min nên 2x - 3 max
\(\Rightarrow2x-3=-1\Rightarrow x=-1\)
Vậy Smin = -5
P/S: thấy đề sao sao á
Đây là đề học sinh giỏi của mik