Cho các số thực dương a b TM 4a^2+4b^+17ab+5a+5b>=1 tìm min 17a^2+17b^2+16ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách làm tương tự: Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
\(P=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)
\(\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}=\frac{1}{3}\)
Ta có :
\(P^1=\frac{a+b}{\sqrt{a\left(4a+5b\right)}+\sqrt{b\left(4b+5a\right)}}.\)
\(\Leftrightarrow P^2=\frac{3\left(a+b\right)}{\sqrt{9a\left(4a+5b\right)}+\sqrt{9b\left(4b+5a\right)}}\)
Mà ta thấy biểu thức \(P^2\ge\frac{3\left(a+b\right)}{\frac{9a+4a+5b}{2}+\frac{9b+4b+5a}{2}}\)
\(=\frac{1}{3}\)
Vậy giá trị nhỏ nhất của biểu thức \(P=\frac{1}{3}\)
\(\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)