Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Dự đoán dấu "=" xảy ra khi \(a=b=c=1\) ta tính được giá trị là \(9\)
Ta sẽ chứng minh nó là GTLN
Thật vậy ta cần chứng minh
\(\Sigma\dfrac{11a+4b}{4a^2-ab+2b^2}\le\dfrac{3\left(ab+ac+bc\right)}{abc}\)
\(\LeftrightarrowΣ\left(\dfrac{3}{a}-\dfrac{11a+4b}{4a^2-ab+2b^2}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}\ge0\)
\(\LeftrightarrowΣ\left(\dfrac{\left(a-b\right)\left(a-6b\right)}{a\left(4a^2-ab+2b^2\right)}+\dfrac{1}{b}-\dfrac{1}{a}\right)\ge0\)
\(\LeftrightarrowΣ\dfrac{\left(a-b\right)^2\left(a+b\right)}{ab\left(4a^2-ab+2b^2\right)}\ge0\) (luôn đúng)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a^5+b^2+c^2\right)\left(\dfrac{1}{a}+b^2+c^2\right)\ge\left(a^2+b^2+c^2\right)^2\)
\(\Rightarrow\dfrac{1}{a^5+b^2+c^2}\le\dfrac{\dfrac{1}{a}+b^2+c^2}{\left(a^2+b^2+c^2\right)^2}\)
Tương tự rồi cộng theo vế ta có:
\(Σ\dfrac{1}{a^5+b^2+c^2}\le\dfrac{Σ\dfrac{1}{a}+2Σa^2}{\left(a^2+b^2+c^2\right)^2}\)
Ta chứng minh \(Σ\dfrac{1}{a}+2\left(a^2+b^2+c^2\right)\le3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\) - BĐT cuối đúng
Vậy ta có ĐPCM. Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3:
Từ \(a+b+c=3abc\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=3\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow xy+yz+xz=3\) và BĐT cần chứng minh là
\(x^3+y^3+z^3\ge3\). Áp dụng BĐT AM-GM ta có:
\(x^3+x^3+1\ge3\sqrt[3]{x^3\cdot x^3\cdot1}=3x^2\)
Tương tự có: \(y^3+y^3+1\ge3y^2;z^3+z^3+1\ge3z^2\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(x^3+y^3+z^3\right)+3\ge3\left(x^2+y^2+z^2\right)\)
Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge3\left(xy+yz+xz\right)=9\left(xy+yz+xz=3\right)\)
\(\Rightarrow2\left(x^3+y^3+z^3\right)+3\ge9\Rightarrow2\left(x^3+y^3+z^3\right)\ge6\)
\(\Rightarrow x^3+y^3+z^3\ge3\). BĐT cuối đúng nên ta có ĐPCM
Đẳng thức xảy ra khi \(a=b=c=1\)
T/b:Vâng, rất giỏi
$\sum \sqrt{\frac{ab+2c^2}{1+ab-c^2}}\geq ab+bc+ca+2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Do 1/b+1/c=3/4-1/a suy ra \(\sum\) (1a/)=3/4
Ta có \(\dfrac{\sqrt{b^2+bc+c^2}}{a^2}\)= \(\dfrac{\sqrt{\left(b+c\right)^2-bc}}{a^2}\ge\dfrac{\sqrt{\left(b+c\right)^2-\dfrac{\left(b+c\right)^2}{4}}}{a^2}=\dfrac{\sqrt{3}\left(b+c\right)}{2a^2}\)
Tương tự ta được:
P\(\ge\) \(\sqrt{3}\) \(\left(\sum\dfrac{b+c}{a^2}\right)\) \(\ge\) \(\sqrt{3}\) (1/a+1/b+1/c) \(\ge\dfrac{3\sqrt{3}}{4}\)
Đẳng thức xảy ra \(\Leftrightarrow\) a=b=c=4
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{ab+a+2}=\dfrac{1}{ab+1+a+1}\le\dfrac{1}{4}\left(\dfrac{1}{ab+1}+\dfrac{1}{a+1}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{abc}{ab+abc}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{abc}{ab\left(c+1\right)}+\dfrac{1}{a+1}\right)=\dfrac{1}{4}\left(\dfrac{c}{c+1}+\dfrac{1}{a+1}\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{1}{bc+b+2}\le\dfrac{1}{4}\left(\dfrac{a}{a+1}+\dfrac{1}{b+1}\right);\dfrac{1}{ca+c+2}\le\dfrac{1}{4}\left(\dfrac{b}{b+1}+\dfrac{1}{c+1}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\dfrac{1}{4}\left(\dfrac{a+1}{a+1}+\dfrac{b+1}{b+1}+\dfrac{c+1}{c+1}\right)=\dfrac{1}{4}\cdot3=\dfrac{3}{4}\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Bài 1:
Ta có: \(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{ab+bc+ca+a^2}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\dfrac{b}{\sqrt{1+b^2}}=\dfrac{b}{\sqrt{ab+bc+ca+b^2}}=\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\)
\(\dfrac{c}{\sqrt{1+c^2}}=\dfrac{c}{\sqrt{ab+bc+ca+c^2}}=\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Vậy \(P=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
Áp dụng BĐT AM-GM ta có:
\(P\le a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)+c\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{a+c}\right)=\dfrac{9}{4}\)
Bài 2:
Ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}=\dfrac{2+\sqrt{4\left(1+x^2\right)}}{2x}\le\dfrac{2+\dfrac{4+\left(1+x^2\right)}{2}}{2x}=\dfrac{9+x^2}{4x}\)
Tương tự ta cũng có:
\(\dfrac{1+\sqrt{1+y^2}}{y}\le\dfrac{9+y^2}{4y};\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+z^2}{4z}\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le\dfrac{9+x^2}{4x}+\dfrac{9+y^2}{4y}+\dfrac{9+z^2}{4z}\)
\(=\dfrac{9\left(xy+yz+xz\right)+xyz\left(x+y+z\right)}{4xyz}\le\dfrac{9\cdot\dfrac{\left(x+y+z\right)^2}{3}+\left(xyz\right)^2}{4xyz}=xyz\)
Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)
Bài 1:
\(\dfrac{2a}{\sqrt{1+a^2}}=\dfrac{2a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Sau đó côsi
Tự làm nốt nhé, ra 3/2 đấy. Em học lớp 8 nên cách giải chỉ thế thôi. Câu 2 em chưa làm được
\(P=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
\(=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}+\sqrt{\dfrac{bc}{a\left(a+b+c\right)+bc}}+\sqrt{\dfrac{ca}{b\left(a+b+c\right)+ca}}\)
\(=\sqrt{\dfrac{ab}{\left(b+c\right)\left(c+a\right)}}+\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ca}{\left(a+b\right)\left(b+c\right)}}\)
\(\le\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+b}\right)=\dfrac{1}{2}\)
\("=" \Leftrightarrow a=b=c=\frac{1}{3}\)
☘ Ta có:
\(P=\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
\(=\dfrac{a}{\sqrt{ab+ac+ca+a^2}}+\dfrac{b}{\sqrt{ab+ac+ca+b^2}}+\dfrac{c}{\sqrt{ab+ac+ca+c^2}}\)
\(=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
☘ Áp dụng bất đẳng thức AM - GM
\(\Rightarrow\dfrac{1}{\sqrt{a+b}}\times\dfrac{1}{\sqrt{a+c}}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{2}\)
\(\Rightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{a}{2\left(a+b\right)}+\dfrac{a}{2\left(a+c\right)}\)
☘ Tương tự, ta cũng có:
\(\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\dfrac{b}{2\left(a+b\right)}+\dfrac{b}{2\left(b+c\right)}\)
\(\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{c}{2\left(a+c\right)}+\dfrac{c}{2\left(b+c\right)}\)
\(\Rightarrow P\le\dfrac{a+b}{2\left(a+b\right)}+\dfrac{a+c}{2\left(a+c\right)}+\dfrac{b+c}{2\left(b+c\right)}=\dfrac{3}{2}\)
☘ Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
⚠ Source: https://hoc24.vn/hoi-dap/question/237527.html
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{3}}=\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\)
Tức cần chứng minh \(\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\ge1\)
\(\Leftrightarrow3\left(a+b+c\right)\ge3+ab+bc+ca\)
\(\Leftrightarrow9\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge\left(3\left(a^2+b^2+c^2\right)+ab+bc+ca\right)^2\)
Đặt \(a^2+b^2+c^2=k\left(ab+bc+ca\right)\left(k\ge1\right)\) và ta cần cm:
\(9(k+2)k\geq(3k+1)^2\)\(\Leftrightarrow12k-1\ge9\) *đúng với \(k\ge 1\) :|*