một vật dao động điều hòa có phương trình x=3sin(2t+pi/4); x gọi là li độ, t gọi là thời gian. Hãy tìm t để dao động đạt đc li độ cực đại
ai giúp với ạ mik đang cần gấp :''(((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,vật qua vị trí x=-5 => thay x vào phương trình dao động .
2,T=0,4 s=> t=1s=2,5 T=2T+0,5T. 2chu kì sẽ đi qua x=1 bốn lần,thêm một nửa chu kì nữa được 1 lần.tổng cộng là 5 lần. Vẽ đường tròn ra nha cậu
3, denta t= 4,625-1=3,625 s=3,625 T=3T+1/2 T+1/8 T
tại t1=1s,x=căn 2.
quãng đường đi được trong 3,625 T=3. 4A+2A+A căn 2/2 .Vì một ch kì vật đi được 4A,cậu cũng vè đường tròn ra là thấy
S=29,414 cm ,v=S/t= 29,414/3,625=8,11 cm/s.
4.Tự làm nốt nhé,cứ ốp vào dường tròn là ra ngay.
Vận tốc dương khi vật chuyển động theo chiều dương trục toạ độ.
Gia tốc có hướng về VT cân bằng, nên để gia tốc dương thì vật đi từ biên độ âm về VTCB.
Do vậy, vận tốc và gia tốc đều có giá trị dương khi vật đi từ biên độ âm về VTCB.
Thời gian ngắn nhất là 1/4 T.
Chọn đáp án A
x 1 = 4 cos 2 π t c m x 2 = 3 sin 2 π t + π 2 c m = 3 cos 2 π t ⇒ A = A 1 + A 2 = 7 c m
Để tính quãng đường vật đi được sau 0,25 s, ta có thể sử dụng phương trình dao động điều hòa x = A * cos(2π/T * t + φ), trong đó x là vị trí của vật (cm), A là biên độ của vật (cm), T là chu kỳ của dao động (s), t là thời gian (s), và φ là góc pha ban đầu (rad).
Trong trường hợp này, phương trình dao động là x = 4cos(4πt + π/4). Ta có thể nhận thấy rằng biên độ của vật là 4 cm và chu kỳ của dao động là T = 1/4 s.
Để tính quãng đường vật đi được sau 0,25 s, ta thay t = 0,25 vào phương trình:
x = 4cos(4π * 0,25 + π/4)
x = 4cos(π + π/4)
x = 4cos(5π/4)
x ≈ 4 * (-0,7071)
x ≈ -2,8284 cm
Vậy, quãng đường vật đi được sau 0,25 s kể từ khi bắt đầu chuyển động là khoảng -2,8284 cm.
\(\omega=20\left(\dfrac{rad}{s}\right)\)
\(A^2=x^2+\dfrac{v^2}{\omega}\)
\(\Rightarrow A=\sqrt{\left(-4\right)^2+\dfrac{\left(-80\right)^2}{20^2}}=4\sqrt{2}\)
\(cos\varphi=\dfrac{4}{4\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Rightarrow\varphi=\dfrac{\pi}{4}\)
Phương trình dao động:
\(x=4\sqrt{2}cos\left(20t+\dfrac{\pi}{4}\right)\)
\(sin\left(2t+\dfrac{\pi}{4}\right)\le1\Rightarrow x\le3\)
\(x_{max}=3\) khi \(sin\left(2t+\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow2t+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow t=\dfrac{\pi}{8}+k\pi\) với \(k\in Z\)