K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).........\left(\frac{1}{100^2}-1\right)\)

\(\Rightarrow A=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}............\frac{1-100^2}{100}\)

\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}............\frac{-9999}{100^2}\)

\(\Rightarrow A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}...............\frac{-99.101}{100^2}\)

\(\Rightarrow A=\frac{-\left(1.2.3.............99\right).\left(3.4.5............101\right)}{\left(2.3.4......100\right).\left(2.3.4.............100\right)}\)

\(\Rightarrow A=\frac{-1.101}{100.2}=\frac{-101}{200}\)

Vậy \(A=\frac{-101}{200}\)

Chúc bn học tốt

5 tháng 3 2020

\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

=>\(\)

=>\(A< -\left(\frac{1.2.3....99}{2.3.4...100}\right)=-\frac{1}{100}\)

Mà \(-\frac{1}{100}>-\frac{1}{2}\)

=>\(A>-\frac{1}{2}\) đúng ko nhỉ

M=-(\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{1-100^2}{100^2}\))

=-(\(\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}...\frac{99.100}{100.100}\))

=-(\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...100}{2.3.4..100}\))

=-(\(\frac{1}{100}.\frac{1}{2}\))

=\(\frac{-1}{200}\)

12 tháng 7 2018

thanks you very very much

5 tháng 3 2020

Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)

\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)

\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

5 tháng 3 2020

đúng đó bạn

\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)

\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)

\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)

16 tháng 8 2016

Ta có

\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)

=> A<-1/2

 

7 tháng 12 2016

A>1/2

Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết