Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).........\left(\frac{1}{100^2}-1\right)\)
\(\Rightarrow A=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}............\frac{1-100^2}{100}\)
\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}............\frac{-9999}{100^2}\)
\(\Rightarrow A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}...............\frac{-99.101}{100^2}\)
\(\Rightarrow A=\frac{-\left(1.2.3.............99\right).\left(3.4.5............101\right)}{\left(2.3.4......100\right).\left(2.3.4.............100\right)}\)
\(\Rightarrow A=\frac{-1.101}{100.2}=\frac{-101}{200}\)
Vậy \(A=\frac{-101}{200}\)
Chúc bn học tốt
A>1/2
Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết
Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)..\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{2017^2}-1\right)\)
\(A=\left(-\frac{3}{2^2}\right)\left(\frac{-8}{3^2}\right)\left(\frac{-15}{4^2}\right)...\left(\frac{-\left(1-2017^2\right)}{2017^2}\right)\)
( có 2016 thừa số)
\(A=\frac{3.8.15...\left(1-2017^2\right)}{2^2.3^2.4^2...2017^2}\)
\(A=\frac{\left(1.3\right)\left(2.4\right)...\left(2016.2018\right)}{\left(2.2\right)\left(3.3\right)\left(4.4\right)...\left(2017.2017\right)}\)
\(A=\frac{\left(1.2.3....2016\right)\left(3.4.5....2018\right)}{\left(2.3.4...2017\right)\left(2.3.4...2017\right)}\)
\(A=\frac{1.2018}{2017.2}\)
\(A=\frac{1009}{2017}\)
Ta có : \(\frac{1009}{2017}>0\) (vì tử và mẫu cùng dấu)
\(\frac{-1}{2}< 0\) (vì tử và mẫu khác dấu)
Vậy A>B
Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
đúng đó bạn