K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2019

A B C O E F S T I Q K D N J L P M G R

a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI 

Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC

= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).

+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.

Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR

=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)

=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp 

=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).

b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM

Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M

Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K

Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)

Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng

Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L

=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).

c) Gọi P là trực tâm của \(\Delta\)AJQ

Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI

Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)

Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp

^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900

=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).

d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC

Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]

Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900

Ta xét thứ tự các điểm trên cạnh AC: 

+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)

=> ^IES = ^IFT < 900  => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK

Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)

+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800

=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\)   (**)

Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).

19 tháng 1

(a) \(P,Q\) đối xứng với nhau qua \(BC\) nên \(BC\) là đường trung trực của \(PQ\).

Suy ra: \(CQ=CP\Rightarrow\Delta CPQ\) cân tại \(C\Rightarrow\hat{KCP}=\hat{KCQ}\), hay \(\hat{BCP}=\hat{BCF}\). Mà \(\hat{BAP}=\hat{BCP}\) (góc nội tiếp cùng chắn cung \(\stackrel\frown{BP}\)).

Do đó: \(\hat{BAP}=\hat{BCF}\)

Xét \(\Delta ABK,\Delta CBF:\)

\(\hat{B}\) chung và \(\hat{BAP}=\hat{BCF}\left(cmt\right)\)

\(\Rightarrow\Delta ABK\sim\Delta CBF\left(g.g\right)\Rightarrow\dfrac{AK}{CF}=\dfrac{AB}{CB}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{CF}{CB}\left(1\right)\)

Ta cũng dễ chứng minh được \(\Delta ABK\sim\Delta CPK\left(g.g\right)\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{CP}=\dfrac{AB}{CQ}\left(CP=CQ\left(cmt\right)\right)\)

\(\Rightarrow\dfrac{AK}{AB}=\dfrac{CK}{CQ}\left(2\right)\).

Từ (1) và (2), suy ra: \(\dfrac{CF}{CB}=\dfrac{CK}{CQ}\Leftrightarrow\dfrac{CQ}{CB}=\dfrac{CK}{CF}\).

Xét \(\Delta CQK,\Delta CBF:\left\{{}\begin{matrix}\hat{C}\text{ chung}\\\dfrac{CQ}{CB}=\dfrac{CK}{CB}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta CQK\sim\Delta CBF\left(c.g.c\right)\Rightarrow\hat{CKQ}=\hat{CFB}\).

Lại có: \(\hat{CKQ}+\hat{QKB}=180^o\) (kề bù), suy ra \(\hat{CFB}+\hat{QKB}=180^o\).

Đây là hai góc đối nhau nên tứ giác \(BKQF\) nội tiếp được một đường tròn (đpcm).

Chứng minh tương tự như trên thì ta cũng suy ra được tứ giác \(KQEC\) nội tiếp được một đường tròn.

 

(b) Từ câu a, \(KQEC\) là tứ giác nội tiếp nên \(\hat{QEA}=\hat{QKC}\) (cùng bù với \(\hat{QEC}\)); \(BFQK\) là tứ giác nội tiếp nên \(\hat{QFB}=\hat{QKC}\) (cùng bù với \(\hat{QKB}\)).

Suy ra: \(\hat{QFB}=\hat{QEA}\).

Lại có: \(\hat{QFB}+\hat{QFA}=180^o\) (kề bù) nên \(\hat{QEA}+\hat{QFA}=180^o\)

Đây là hai góc đối nhau nên tứ giác \(AFQE\) nội tiếp (đpcm).

 

(c) \(L\in\left(AEF\right)\) mà tứ giác \(AFQE\) nội tiếp (cmt), suy ra \(Q\in\left(AEF\right)\), hay tứ giác \(AFLQ\) nội tiếp.

Suy ra: \(\hat{FAL}=\hat{FQL}\) (hai góc cùng nhìn một cạnh), hay \(\hat{BAP}=\hat{FQL}\).

Mà ở câu a, \(\hat{BAP}=\hat{BCF}\Rightarrow\hat{BAP}=\hat{KCQ}\).

\(\Rightarrow\hat{KCQ}=\hat{FQL}\).

Hai góc này ở vị trí đồng vị nên \(QL\left|\right|CK\), mà \(CK\perp PQ\) (\(BC\) là đường trung trực của \(PQ\) (chứng minh ở a))

Do đó, \(QL\perp PQ\), tức \(\hat{PQL}=90^o\left(đpcm\right)\)

 

19 tháng 1

27 tháng 4 2021

giúp em với năn nỉ m,n 

21 tháng 5 2020

BẠN SAI RỒI CẮT NHAU TẠI E Ở NGOÀI ĐƯỜNG TRÒN MÀ

21 tháng 5 2020

dây cung AB và CD sao cho tia AB và tia CD cắt nhau tại điểm E ở ngoài đường tròn