K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Đề thiếu r bạn Nguyễn Đức Thịnh  ơi !!!

Ngay dòng đầu lun

13 tháng 3 2020

A B C B' C' M' M

Xét tam giác BAC và tam giác B'AC'

có AB=AB' (GT)

AC=AC' (GT)

góc CAB = góc C'AB' (đối đỉnh)

suy ra tam giác BAC = tam giác B'AC' (c.g.c)  (1)

suy ra BC=B'C' (hai cạnh tương ứng)

b) Vì BM=MC = BC/2, B'M'=M'C' = B'C'/2

mà B'C' = BC

suy ra BM=MC = B'M'=M'C'

Từ (1) suy ra góc B' = góc B

Xét tam giác AB'M' và tam giác ABM

có M'B' = BM (CMT)

góc B=góc B' (CMT)

AB=AB' (GT)

suy ra tam giác AB'M' = tam giác ABM (c.g.c)  (*)

Suy ra góc M'AB' = góc MAB 

Ta có góc BAB' = 1800

suy ra góc BAM + góc MAC + góc CAB' = 1800

Hay gócM'AB'+ góc MAC + góc CAB' = 1800

suy ra góc MAM' = 1800

suy ra M,A, M' thẳng hàng

c) Từ (*) suy ra AM = AM' (hai cạnh tương ứng)

15 tháng 9 2019

                                                           Bài giải

A B C B' C' M M'

a, Ta có : AB' là tia đối của AB ; AB = AB'

              AC' là tia đối của AC ; AC = AC'

\(\Rightarrow\text{ Hai góc }ABC\text{ và }AB'C'\text{ là hai góc đối đỉnh}\)

\(\Rightarrow\text{ }\widehat{ABC}=\widehat{AB'C'}\)

\(\Rightarrow\text{ }BC=B'C'\)

b, Chịu

Anh https://olm.vn/thanhvien/dang91920071q làm giùm nha !

30 tháng 9 2019

a. Xét \(\Delta\)AB'C' và \(\Delta\)ABC có: 

AB = AB' ; 

^B'AC' = ^BAC;

AC = AC' ;

=> ​​\(\Delta\)AB'C' = ​​\(\Delta\)ABC  ( c-g-c)​

=> BC = B'C' (1)

b) Xét \(\Delta\)ABM và \(\Delta\)AB'M' có:

^ABM = ^AB'M' (  ​​\(\Delta\)AB'C' = ​​\(\Delta\)ABC ) 

AB' = AB (gt)

^BAM = ^B'AM ( đối đỉnh)

=>  \(\Delta\)ABM và \(\Delta\)AB'M'

=> BM = B'M' (2)

Từ (1); (2) => BC - BM = B'C' - B'M'

                 => CM = C'M' (3)

mà M là trung điểm BC => MB = MC (4)

(2); (3); (4) => B'M' = M'C'

=> M' là trung điểm B'C'

a: Xét tứ giác ABCM có 

D là trung điểm của AC

D là trung điểm của BM

Do đó: ABCM là hình bình hành

Suy ra: AM//BC và AM=BC

3 tháng 1 2022

???

Đề thiếu rồi bạn

30 tháng 3 2020

E B A C M D O

a) Xét tam giác CMA và tam giác BMD có : 

\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)

=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)

=> ACBD là hình bình hành 

=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm 

b) Xét tam giác ABC và tam giác CDA có : 

\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)  

        Chung AC 

=> AD=BC

=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm 

c) Xét tam giác ABC có : 

M là trung điểm BC 

A là trung điểm CE 

Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm ) 

e) AM //BE => AD // BE 

Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B 

=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)

Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm 

=> E,O , D thẳng hàng => đpcm