K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10. Tính độ dài x trên hình dưới đây.11. Tính độ dài x trên hình dưới đây.12. Tính độ dài x trên các hình sau:13.* Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H ∈ BC) Biết HB = 9cm, HC = 16cm. Tính độ dài AH.14. Trên mặt phẳng tạo độ Oxy, vẽ điểm A có tọa độ (3;5). Tính khoảng cách từ điểm A đến gốc tọa độ.15. Trên mặt phẳng tọa độ Oxy, sẽ điểm A có tọa độ (1;1). Đường...
Đọc tiếp

10. Tính độ dài x trên hình dưới đây.

11. Tính độ dài x trên hình dưới đây.

12. Tính độ dài x trên các hình sau:

13.* Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC (H ∈ BC) Biết HB = 9cm, HC = 16cm. Tính độ dài AH.

14. Trên mặt phẳng tạo độ Oxy, vẽ điểm A có tọa độ (3;5). Tính khoảng cách từ điểm A đến gốc tọa độ.

15. Trên mặt phẳng tọa độ Oxy, sẽ điểm A có tọa độ (1;1). Đường tròn tâm O với bán kinh Oa cắt các tia Ox, Oy theo thứ tự B và C. Tìm tọa độ của các điểm B, C.

16. Tính độ dài của các đoạn thẳng AB, BC, CD, CD trên mặt phẳng tọa độ (Hình vẽ bên, với đơn vị là đơn vị dài của hệ trục tọa độ).

MN GIÚP MK VS ....MK ĐANG CẦN RẤT GẤP, AI BIẾT GIẢI BÀI NÀO THÌ GIẢI CHI TIẾT ĐẦY ĐỦ GIÚP MK VS 

2
4 tháng 3 2020

10. 

11. 

12. 

15.

HÌNH ĐÂY NHA MN...

4 tháng 3 2020

lj có hình nào bn

11 tháng 3 2017

AH = 12. đúng 100%. mình giải rùi

11 tháng 3 2017

Bạn tự vẽ hình ra hì. Mình vẽ ko được

                                      Bài làm

Tam giác AHB vuông tại H: AH^2+HB^2=AB^2

Tam giác AHC vuông tại H:AH^2+HC^2=AC^2

Tam giác ABC vuông tại A:BC^2=AB^2+AC^2

BC=HB+HC=9+16=25

BC^2=AH^2+HB^2+AH^2+HC^2=2AH^2+HB^2+HC^2=25^2=625

2HA^2+9^2+16^2=625

2HA^2+337=625

2HA^2=288

HA^2=144

HA=12

21 tháng 2 2022

a, B=30*

tgBAH = tgDAH (cgc) => ADH = 60* => ADC = 120* => DAC = 30* = ACD => ADC cân tại D

b, 

15 tháng 8 2015

tự vẽ hình:::::

áp dụng định lí py-ta-go vào tam giác BHA vuông tại H ta được:

BH2+AH2=AB2(1)

áp dụng định lí py-ta-go vào tam giác AHC vuông tại H ta được:

HC2+AH2=AC2(2)

áp dụng định lí py-ta-go vào tam giác ABC vuông tại A ta được:

AB2+AC2=BC2(3)

Công hai vế (1);(2) kết hợp với (3) ta được:

HB2+HC2+AH2+AH2=AB2+AC2

92+162+2AH2=BC2

337+2AH2=(9+16)2

2AH2=625-337

2AH2=288

AH2=144

=>AH=√144=12(cm)

15 tháng 8 2015

bạn ơi ko phải mk ko giúp mà về phần hình học mình dốt lắm

21 tháng 3 2022

undefined

a) Xét tam giác AHB và AHC có:

AC = BC (gt)

\(\widehat{AHB}=\widehat{AHC}\) (AH vuông góc BC)

=> AHB = AHC (ch-gv)

=> HB = HC (cạnh tương ứng)

\(\widehat{BAH}=\widehat{CAH}\) (góc tương ứng)

b) Ta có HB =  HC (cmt)

Mặt khác AH là cạnh góc vuông của tam giác vuông AHC

Áp dụng định lý Pitago ta có:

\(AC^2=AH^2+HC^2\\ =>10^2=AH^2+6^2\\ =>100=AH^2+36\)

\(=>AH^2=100-36=64\\ =>AH=\sqrt{64}=8\)

21 tháng 3 2022

GeoGebra ko có chỗ thêm độ dài nên cậu vẽ lại cái hình đấy cho rõ hơn cũng đc 

28 tháng 7 2023

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC