K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

Ta có: 

\(10^{2011}=100...00\)( 2001 số 0 )

\(10^{2011}+8=100...08\)( 2010 số 0 )

=> Tổng các số hạng của 100...08 là: \(1+8=9\)

=> \(10^{2011}+8⋮9\)

Vì \(100...08\)có 2 chữ số tận cùng là 08 nên chia hết cho 8

=> \(10^{2011}+8⋮8\)

Vì \(10^{2011+8}⋮8,9\)

=> \(10^{2011}+8⋮72\left(72=9.8\right)\left(đpcm\right)\)

Có 72=8.9

Vì 10^2011 \(⋮\)8 và 8\(⋮\)8 nên 10^2011+8\(⋮\)8     (1)

Có 10^2011+8=1000...008 (có 2010 số 0)

Tổng các chữ số của 10^2011+8=1+8=9\(⋮\)  (2)

Từ (1) và (2) suy ra

10^2011+8 chia hết cho 8 và 9 

mà (8,9)=1 nên 10^2011 \(⋮\)8.9

10^2011\(⋮\)72

Vậy....