K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Ta có : \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x-4\right)^2\)

=> \(3x\left(1-x\right)+\left(x+3\right)\left(x-2\right)=-2\left(x^2-8x+16\right)\)

=> \(3x-3x^2+x^2+3x-2x-6=-2x^2+16x-32\)

=> \(3x-3x^2+x^2+3x-2x-6+2x^2-16x+32=0\)

=> \(-12x+26=0\)

=> \(x=\frac{26}{12}=\frac{13}{6}\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{\frac{13}{6}\right\}\)

28 tháng 2 2020

mơn bạn nhìu

17 tháng 7 2017

ĐK \(\orbr{\begin{cases}x>2\\x\le-2\end{cases}}\)

Đặt \(\sqrt{\frac{x+2}{x-2}}=t\Rightarrow x+2=t^2\left(x-2\right)\)

Vậy thì phương trình trở thành \(t^2\left(x-2\right)^2+4\left(x-2\right)t+3=0\)

\(\Leftrightarrow\left[t\left(x-2\right)+1\right]\left[t\left(x-2\right)+3\right]=0\)

Với \(t\left(x-2\right)+1=0\Leftrightarrow\sqrt{\frac{x+2}{x-2}}\left(x-2\right)+1=0\)

Để pt có nghiệm thì \(x-2< 0\) , khi đó \(-\sqrt{\frac{x+2}{x-2}\left(x-2\right)^2}+1=0\Leftrightarrow-\sqrt{x^2-4}+1=0\)

\(\Leftrightarrow x^2-4=1\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(l\right)\\x=-\sqrt{5}\left(n\right)\end{cases}}\)

Với \(t\left(x-2\right)+3=0\Leftrightarrow-\sqrt{x^2-4}+3=0\)

\(\Leftrightarrow x^2-4=9\Leftrightarrow\orbr{\begin{cases}x=\sqrt{13}\left(l\right)\\x=-\sqrt{13}\left(n\right)\end{cases}}\)

Vậy pt có tập nghiệm \(S=\left\{-\sqrt{13};-\sqrt{5}\right\}\)

AH
Akai Haruma
Giáo viên
28 tháng 2 2020

Lời giải:

$3x(1-x)+(x+3)(x-2)=-2(x-4)^2$

$\Leftrightarrow (3x-3x^2)+(x^2-2x+3x-6)=-2(x^2-8x+16)$

$\Leftrightarrow -2x^2+4x-6=-2x^2+16x-32$

$\Leftrightarrow 12x=26\Rightarrow x=\frac{13}{6}$

Vậy........

12 tháng 2 2019

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

Đặt \(a=x^2+x\)

\(\Leftrightarrow a^2+4a=12\)

\(\Leftrightarrow a^2+4a-12=0\)

\(\Leftrightarrow a^2+6a-2a-12=0\)

\(\Leftrightarrow a\left(a+6\right)-2\left(a+6\right)=0\)

\(\Leftrightarrow\left(a+6\right)\left(a-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-6\\a=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x=-6\\x^2+x=2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{23}{4}=0\\x^2+2x-x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2=\frac{-23}{4}\left(loai\right)\\\left(x+2\right)\left(x-1\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy....

10 tháng 8 2020

Bài làm:

Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40-72=0\)

\(\Leftrightarrow x^4-14x^2-32=0\)

\(\Leftrightarrow\left(x^4-16x^2\right)+\left(2x^2-32\right)=0\)

\(\Leftrightarrow x^2\left(x^2-16\right)+2\left(x^2-16\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2-16\right)=0\)

Mà \(x^2+2\ge2>0\left(\forall x\right)\)

\(\Rightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow x=\pm4\)

10 tháng 8 2020

( x + 2 )( x - 2 )( x2 - 10 ) = 72

<=> ( x2 - 4 )( x2 - 10 ) = 72

<=> x4 - 14x2 + 40 - 72 = 0

<=> x4 - 14x2 - 32 = 0

Đặt t = x2 ( \(t\ge0\))

Pt <=> t2 - 14t - 32 = 0

     <=> t2 + 2t - 16t - 32 = 0

     <=> t( t + 2 ) - 16( t + 2 ) = 0

     <=> ( t - 16 )( t + 2 ) = 0

     <=> \(\orbr{\begin{cases}t-16=0\\t+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}t=16\\t=-2\end{cases}}\)

\(t\ge0\Rightarrow t=16\)

=> x2 = 16

=> \(x=\pm4\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)

\(\Rightarrow x=12\) (thỏa mãn)

Vậy......