K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

x(x2+6x+9) - 3x= x3+6x2+12x+8+1

\(\Leftrightarrow\)x3+6x2+9x-3x=x3+6x2+12x+9

\(\Leftrightarrow\)6x=12x+9

\(\Leftrightarrow\)6x=-9

\(\Leftrightarrow\)x=-3/2

Vậy phương trình có 1 nghiệm duy nhất x=-3/2

28 tháng 2 2020

x(x + 3)^2  - 3x = (x + 2)^3 + 1

<=> x(x^2 + 6x + 9) = x^3 + 6x^2 + 12x + 8 + 1

<=> x^3 + 6x^2 + 9x = x^3 + 6x^2 + 12x + 9

<=> 3x + 9 = 0

<=> 3x = -9

<=> x = -3

27 tháng 1 2022

sửa đề : 

\(x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\Leftrightarrow x=1\)

2 tháng 5 2022

      `x - ( 2x - 1 ) <= 3x - 3`

`<=> x - 2x + 1 <= 3x - 3`

`<=> 3x - x + 2x >= 1 + 3`

`<=> 4x >= 4`

`<=> x >= 1`

Vậy `S = { x | x >= 1 }`

2 tháng 5 2022

\(\Leftrightarrow x-2x+1\le3x-3\)

\(\Leftrightarrow-4x\le-4\)

\(\Leftrightarrow x\ge1\)

4 tháng 5 2022

`x(x - 4) - 3x + 12 = 0`

`<=> x(x - 4) + 3(x - 4) = 0`

`<=> (x + 3)(x - 4) = 0`

`<=>` $\left[\begin{matrix} x + 3 = 0\\ x - 4 = 0\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x = -3\\ x = 4\end{matrix}\right.$

Vậy `S = {-3; 4}`

24 tháng 1 2022

\(x+x^2=0\)

\(\Leftrightarrow x\left(1+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy: Phương trình có tập nghiệm \(S=\left\{0;-1\right\}\)

24 tháng 1 2022

\(x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

28 tháng 7 2021

Tham khảo thử đúng không nha mn

     \(x^2+x-y^2=0\)

⇔ \(\left(x^2-y^2\right)+x=0\)

⇔ \(\left(x-y\right)\left(x+y\right)+x=0\)

⇒ \(x-y=0\) hoặc \(x+y=0\) hoặc \(x=0\)

⇒ \(x=y=0\)

28 tháng 7 2021

đúng 

Thay x=3 vào pt,ta được:

3^2+(m^2-2m)*3-9+12m=0

=>3m^2-6m+12m=0

=>3m^2+6m=0

=>m=0 hoặc m=-2

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

5 tháng 4 2023

\(\dfrac{x+5}{x-5}=\dfrac{5}{x^2-5x}+\dfrac{1}{x}\)

\(\Leftrightarrow\dfrac{x+5}{x-5}=\dfrac{5}{x\left(x-5\right)}+\dfrac{1}{x}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x-5\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne5\end{matrix}\right.\)

Ta có : \(\dfrac{x+5}{x-5}=\dfrac{5}{x\left(x-5\right)}+\dfrac{1}{x}\)

\(\Leftrightarrow\dfrac{x\left(x+5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}+\dfrac{x-5}{x\left(x-5\right)}\)

`=> x (x+5) = 5 +x-5`

`<=> x^2 +5x - 5-x+5=0`

`<=> x^2 +4x =0`

`<=> x(x+4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(l\right)\\x=-4\end{matrix}\right.\)

Vậy phương trình có nghiệm `x=-4`