K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

<=>(a2+b2)cd=(c2+d2)ab

<=>a2cd + b2cd -c2ab- d2ab=0

<=>ac(ad-bc)-bd(ad-bc)=0

<=>(ac-bd)(ad-bc)=0

<=>ac=bd

<=>a/b=c/d

Học tốt !

27 tháng 2 2020

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

=> (a2+b2)cd=(c2+d2)ab

=> (a2+b2)cd-(c2+d2)ab=0

=> a2cd+b2cd-c2ab-d2ab=0

=> ac(ad-cb)+bd(bc-ad)=0

=> ac(ad-cb)-bd(ad-bc)=0

=> (ad-cb)(ac-bd)=0

=> ad-cb=0 hoặc ac-bd=0

+) Nếu ad-cb=0 thì ad=cb

+) Nếu ac-bd=0 thì ac=bd

=> \(\frac{a}{c}=\frac{d}{b}\)hay \(\frac{a}{b}=\frac{c}{d}\)

Đúng 100% nên nhớ k đúng cho mình với nha.

16 tháng 11 2016

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau tao có

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) ta có ĐPCM

22 tháng 10 2020

Lần sau bạn cho thêm cả dấu ngoặc cho dễ hiểu nhé :v

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) \(\left(b,d\ne0\right)\)

Thay \(\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\) vào \(\frac{a^2-b^2}{ab}\)\(\frac{c^2-d^2}{cd}\) ta có :

\(\left\{{}\begin{matrix}\frac{\left(b.k\right)^2-b^2}{b.k.b}\\\frac{\left(d.k\right)^2-d^2}{d.k.d}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2.k^2-b^2}{b^2.k}\\\frac{d^2.k^2-d^2}{d^2.k}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}\frac{b^2\left(k^2-1\right)}{b^2.k}\\\frac{d^2\left(k^2-1\right)}{d^2.k}\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}\frac{k^2-1}{k}\\\frac{k^2-1}{k}\end{matrix}\right.\)(vì b,d khác 0 nên \(b^2,d^2\) khác 0)

=> \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) (vì cùng bằng \(\frac{k^2-1}{k}\))

vậy \(\frac{a^2-b^2}{ab}\) = \(\frac{c^2-d^2}{cd}\) nếu \(\frac{a}{b}=\frac{c}{d}\)

lâu lắm không làm nên không chắc đâu :v

31 tháng 5 2016

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

9 tháng 4 2019

sao abd2 chuyển vế mà hk đổi dấu

1 tháng 3 2022

giúp mình với

1 tháng 3 2022

Đặt ab=cd=k

 

Khi đó ta có :

a=bk và c=dk

Suy ra :

a2-b2c2-d2=(bk)2-b2(dk)2-d2

=b2k2-b2d2k2-d2

=b2.(k2-1)d2.(k2-1)

=b2d2(1)

Ta lại có :

AH
Akai Haruma
Giáo viên
22 tháng 9 2021

Lời giải:

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Ta có:

$\frac{ab}{cd}=\frac{b^2t}{d^2t}=\frac{b^2}{d^2}(1)$

Mặt khác:

$\frac{(a-b)^2}{(c-d)^2}=\frac{(bt-b)^2}{(dt-d)^2}=\frac{b^2(t-1)^2}{d^2(t-1)^2}=\frac{b^2}{d^2}(2)$

Từ $(1); (2)\Rightarrow \frac{ab}{cd}=\frac{(a-b)^2}{(c-d)^2}$

21 tháng 7 2016

a)Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

21 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)

Áp dụng dãy tỉ số bằng nhau ta có;

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

=> đpcm

Chúc bạn làm bài tốt