cho tam giac ABC , AC = 5cm , AB = 12cm , BC = 13cm .
gọi N là trung diểm BC , lay D dôi xưng của A qua N
a. chưng minh tư giac ABDC là hình chữ nhạt
b. tinh diện tich tư giac ABDC!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Theo bài ra ta có:
BD//AC; AB//CD
=> ABDC là hình bình hành
mà AB=AC
=> ABCD là hình thoi
Ta lại có \(\widehat{A}=90^o\)
=> ABCD là vuông.
b) Hai đường chéo của hình vuông cắt nhau tại trung điểm mỗi đường
Gọi O' là giao điểm của BC và AD
=> O' là trung điểm BC
=> O' trùng điểm O
=> O là trung điểm AD
=> A, O, D thẳng hàng
a) Xét tứ giác AQCP có :
M là trung điểm PQ ( Q là điểm đối xứng với P qua M )
M là trung điểm AC
=> AQCP là hình bình hành
Vì AP\(\perp\)BC
=> AQCP là hình chữ nhật
b) Vì AQCP là hình chữ nhật
=> AQ = PC
=> AQ//PC
=> AQ//BP ( P\(\in\)BC )
Vì ∆ABC cân tại A
Mà AP là đường cao
=> AP là phân giác và trung trực
=> PC = PB
Mà AQ = PC
=> BP = AQ
Xét tứ giác AQPB có :
AQ//BP (cmt)
AQ = BP (cmt)
=> AQPB là hình bình hành
c) Vì M là trung điểm AC
MN //BC
=> N là trung điểm AB
Xét ∆ABC có :
N là trung điểm AB
P là trung điểm BC ( AP là trung tuyến)
=> NP là đường trung bình ∆ABC
=> NP//AC
=> NP//AM ( M \(\in\)BC )
Xét ∆ABC có :
M là trung điểm AC
P là trung điểm BC
=> MP là đường trung bình ∆ABC
=> MP//AB
=> MP//NA ( N \(\in\)AB )
Xét tứ giác ANPM có :
MP//NA (cmt)
AM//NP (cmt)
=> ANPM là hình bình hành
Mà AP là phân giác BAC (cmt)
=> NAMP là hình thoi
a) Vì M là trung điểm AB
=> AM = MB
Vì N là trung điểm BC
=> BN = NC
=> MN là đường trung bình ∆ABC
=> MN//AC
=> AMNC là hình thang (dpcm)
2) Vì AB = AD (gt)
=> ∆ABD cân tại A
=> ABD = ADB
Ta có AM = MB (cmt)
Q là trung điểm AD
=> AQ = QD
=> MQ là đường trung bình ∆ABD
=> QM//DB
=> QMBD là hình thang
Mà ABD = ADB (cmt)
= > QMBD là hình thang cân (dpcm)
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH
suy ra AH=AD (1)
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE
suy ra AH=AE (2)
Từ (1) và (2) suy ra AD=AE (3)
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90*
do đó ^DAB+^BAH+ ^HAC+^CAE=180*
tức là D, A, E thẳng hàng (4)
từ (3) và (4) suy ra D và E đối xứng với nhau qua A.
b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE
nên tam giác DHE vuông tại H.
c) Tam giác ADB=tam giác AHB (c-c-c)
suy ra ^ADB=^AHB=90*
tương tự có ^AEC=90*
suy ra BD//CE (cùng vuông góc với DE)
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE
nên BAEC là hình thang vuông.
d) Do AB là đường trung trực của DH nên BD=BH (5)
Do AC là đường trung trực của EH nên CE=CH (6)
công vế với vế của (5) và (6) ta có BD+CE=BH+CH
hay BD+CE=BC
k mik nha bn
a: Xét tứ giác ABDC có
I là trung điểm của AD
I là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
a/Áp dụng Pitago đảo có \(BC^2=13^2=169,AB^2+BC^2=5^2+12^2=169\)
suy ra tgiac ABC vuông tại A(1). Theo đề N là tđ AD,BC(2)
(1) và (2) suy ra ABDC là hcn
b/SABDC=AC.AB=5.12=60cm^2