K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

Áp dụng tính chất đường trung bình của tam giác ta chứng minh được:

E H = F G = 1 2 B D   v à   H G = E F = 1 2 A C

Mà AC = BD Þ EH = HG = GF= FE nên EFGH là hình thoi.

30 tháng 11 2023

a: AE+EB=AB

BF+FC=BC

CG+GD=CD

DH+HA=DA

mà AB=BC=CD=DA và AE=BF=CG=DH

nên EB=FC=GD=HA

Xét ΔEAH vuông tại A và ΔGCF vuông tại C có

EA=GC

AH=CF

Do đó: ΔEAH=ΔGCF

=>EH=GF

Xét ΔEBF vuông tại B và ΔGDH vuông tại D có

EB=GD

BF=DH

Do đó: ΔEBF=ΔGDH

=>EF=GH

Xét ΔEAH vuông tại A và ΔFBE vuông tại B có

EA=FB

AH=BE

Do đó: ΔEAH=ΔFBE

=>EH=EF và \(\widehat{AEH}=\widehat{BFE}\)

\(\widehat{AEH}+\widehat{HEF}+\widehat{BEF}=180^0\)

=>\(\widehat{BFE}+\widehat{BEF}+\widehat{HEF}=180^0\)

=>\(\widehat{HEF}+90^0=180^0\)

=>\(\widehat{HEF}=90^0\)

Xét tứ giác EHGF có

EF=GH

EH=GF

Do đó: EHGF là hình bình hành

Hình bình hành EHGF có EF=EH

nên EHGF là hình thoi

Hình thoi EHGF có \(\widehat{HEF}=90^0\)

nên EHGF là hình vuông

b: 

AH+HD=AD

=>AH+1=4

=>AH=3(cm)

ΔAEH vuông tại A

=>\(AE^2+AH^2=EH^2\)

=>\(EH^2=3^2+1^2=10\)

=>\(EH=\sqrt{10}\left(cm\right)\)

EHGF là hình vuông

=>\(S_{EHGF}=EH^2=10\left(cm^2\right)\)

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0

a: xét tứ giác ADFE có 

AE//DF

AE=DF

Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

mà AE=AD

nên ADFE là hình vuông

c: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF và DE=BF(1)

hay ME//NF

Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

=>EC và BF cắt nhau tại trung điểm của mỗi đường

=>N là trung điểm của BF

=>FN=BF/2(2)

Ta có: AEFD là hình vuông

=>AF và DE vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau

=>M là trung điểm của DE

=>EM=DE/2(3)

Từ (1), (2) và (3) suy ra EM=FN

Xét tứ giác EMFN có 

EM//FN

EM=FN

Do đó: EMFN là hình bình hành

mà \(\widehat{EMF}=90^0\)

nên EMFN là hình chữ nhật

a: Xét tứ giác ADFE có

AE//DF

AE=DF

AE=AD

góc EAD=90 độ

Do đó: AEFD là hình vuông

b: Xét tứ giác EBCF có

EB//CF
EB=CF

góc EBC=90 độ

EB=BC

Do đó: EBCF là hình vuông

=>EN=FN và góc ENF=90 độ; N là trung điểm của CF

Xét ΔEDC co

EF là trung tuyên

EF=DC/2

Do đo: ΔEDC vuông tại E

Xét tứ giác ENFM có

góc ENF=góc EMF=góc MEN=90 độ

EN=NF

Do đó; ENFM là hình vuông

21 tháng 12 2018

giúp mình với sắp thi rồi