Tìm cặp số nguyên x,y sao cho:
xy - 2x - 2y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x y − 2 x − 2 y = 0 ⇔ x − 2 y − 2 = 4
⇒ x ; y = 3 ; 6 , 6 ; 3 , 1 ; − 2 , − 2 ; 1 , 4 ; 4 0 ; 0
x y − 2 x − 2 y = 0 ⇔ x − 2 y − 2 = 4 x ; y = 3 ; 6 , 6 ; 3 , 1 ; − 2 , − 2 ; 1 , 4 ; 4 0 ; 0
Tìm cặp số nguyên (x,y) sao cho :
A) xy + 3x - 2y - 7 = 0
B) xy - x + 5y - 7 = 0
C ) x + 2y = xy + 2
ĐKXĐ : x,y ∈ Z
a) xy + 3x - 2y - 7 = 0
<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0
<=> ( y + 3 )( x - 2 ) = 1
Ta có bảng sau :
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | 1 |
y | -2 | -4 |
Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }
b) xy - x + 5y - 7 = 0
<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0
<=> ( y - 1 )( x + 5 ) = 2
Ta có bảng sau :
x+5 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | -4 | -6 | -3 | -7 |
y | 3 | -1 | 2 | 0 |
Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }
c) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( x - 2 )( 1 - y ) = 0
<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy ( x ; y ) = ( 2 ; 1 )
à cho mình sửa ý c) một chút nhé
( x - 2 )( 1 - y ) = 0
Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R
Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
\(xy-2x+y+1=0\Leftrightarrow xy-2x+y-2=-3\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-3\)
<=>(x+1)(y-2)=-3
Ta có bảng sau:
x+1 | -3 | -1 | 1 | 3 |
y-2 | 1 | 3 | -3 | -1 |
x | -4 | -2 | 0 | 2 |
y | 3 | 5 | -1 | 1 |
Vậy ....
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
=> (xy-2x)+(y-2)+3 = 0
=> (y-2).(x+1)+3 = 0
=> (y-2).(x+1) = -3
Đến đó bạn dùng quan hệ ước bội mà giải nha
Tk mk nha
xy+2x+y+11=0xy+2x+y+11=0
⇒x.(y+2)+y+2+9=0⇒x.(y+2)+y+2+9=0
⇒(y+2).(x+1)=−9⇒(y+2).(x+1)=−9
⇒y+2⇒y+2 và x+1∈Ư(−9)x+1∈Ư(−9)
Ta xét các trường hợp sau:
TH1:{y+2=1x+1=−9⇒{y=−1x=−10TH1:{y+2=1x+1=−9⇒{y=−1x=−10
TH2:{y+2=3x+1=−3⇒{y=1x=−4TH2:{y+2=3x+1=−3⇒{y=1x=−4
TH3{y+2=9x+1=−1⇒{y=7x=−2TH3{y+2=9x+1=−1⇒{y=7x=−2
TH4:{y+2=−3x+1=3⇒{y=−5x=2TH4:{y+2=−3x+1=3⇒{y=−5x=2
Vậy (y;x)=(−1;−10);(1;4);(7;−2)(−5;2)
xy + 2x - y + 11 = 0
⇔⇔(xy + 2x) + ( - y - 2) = - 13
⇔⇔(y + 2)(x - 1) = -13
⇒⇒(y + 2, x - 1) = (1, - 13; - 13, 1; - 1, 13; 13, - 1)
⇒⇒(y, x) = (- 1, - 12; - 15, 2; - 3, 14; 11, 0)