K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2020

Ta có : \(A=1-3+3^2-3^3+...+3^{2010}-3^{2011}+3^{2012}\)

\(\Rightarrow3A=3-3^2+3^3-3^4+....+3^{2011}-3^{2012}+3^{2013}\)

\(\Rightarrow3A+A=3^{2013}+1\)

\(\Rightarrow4A=3^{2013}+1\)

\(\Rightarrow4A-1=3^{2013}\) là lũy thừa bậc 3. (đpcm)

23 tháng 2 2020

3.A=3 .\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)

3.A= \(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)

3A+A=\(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)+\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)

4A= \(1+3^{2013}\)

nên 4A-1=32013

Vậy 4A-1 là lũy thừa của 3

28 tháng 6 2020

A = 1 - 3 + 32 - 33 + ... - 32011 + 32012

3A = 3( 1 - 3 + 32 - 33 + ... - 32011 + 32012 )

      = 3 - 32 + 33 - 34 + ... - 32012 + 32013 )

=> 4A = 3A + A 

           = ( 3 - 32 + 33 - 34 + ... - 32012 + 32013 ) + ( 1 - 3 + 32 - 33 + ... - 32011 + 32012 )

           =  3 - 32 + 33 - 34 + ... - 32012 + 32013 + 1 - 3 + 32 - 33 + ... - 32011 + 32012

           = ( 3 + 1 - 3 ) + ( 32 - 32 ) + ( 33 - 33 ) + ... + ( 32012 - 32012 ) + 32013

            = 1 + 32013 

4A - 1 <=> 1 + 32013 - 1 = 32013 

=> đpcm 

28 tháng 6 2020

cám ơn bạn

11 tháng 2 2018

Từng bài 1 thôi nhs!

a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005

3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004 

4A = 32005 + 1

=> 4A - 1 = 32005 là lũy thừa của 3

=> ĐPCM

14 tháng 6

đề có thiếu ko đó

A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004 

đặt B  =  23 + 24 + 25 + ...+ 22003 + 22004  

2B=  24 + 25 + 26 + ....+ 22004 + 22005 

2B-B= (  24 + 25 + 26 + ....+ 22004 + 22005  ) -  (   23 + 24 + 25 + ...+ 22003 + 22004 )

B  =   24 + 25 + 26 + ....+ 22004 + 22005     - 23 - 24 -  25 -  ...-  22003 -  22004

B  = 22005  - 23  

B =  22005  - 8 

=> A = 4 + B = 4 +  22005  - 8 = 22005 - 4 =     .....

7 tháng 1 2019

Ta có: \(A=1-3+3^2-3^3+...-3^{2017}+3^{2018}\)

\(=>3A=3-3^2+3^3-3^4+...-3^{2018}+3^{2019}\)

\(=>3A+A=1+3^{2019}\)

\(=>4A-1=3^{2019}\)

=>4A-1 là một lũy thừa của 3 =>(đpcm)

7 tháng 1 2019

Hj, tự nhiên hôm nay chăm rồi làm thoy mak Đặng Quốc Huy

15 tháng 1 2020

 A= 1-3+32-33+...............-32009+32010

=> 3A= \(3-3^2+3^3-...-3^{2010}+3^{2011}\)

=> 3A + A=4A  = \(3^{2011}+1\)

=> 4A-1 = \(3^{2011}+1-1\)=\(3^{2011}\)

Vậy 4A -1 là lũy thừa của 3 

17 tháng 7 2015

3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005

3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004

      4A      = 3^2005 + 1

=> 4A  - 1 = 3^2005 là lũy thừa của 3  => ĐPCM

16 tháng 11 2017

Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải. 

Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2

15 tháng 11 2017

a, Có 2A = 4.2+2^3+2^4+...+2^21

A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21

=> A là lũy thừa cơ số 2

b, Có 3A=3^2+3^3+3^4+...+3^101

2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3

=> 2A+3 = 3^101-3+3 = 3^101

=> A là lũy thừa của 3

k mk nha

29 tháng 5 2018

C3:

Gọi UCLN(12n + 1 ; 30n + 2) là d

Ta có : 12n + 1 \(⋮\)\(\Rightarrow\)5(12n + 1) \(⋮\)\(\Rightarrow\)60n + 5 \(⋮\)d

           30n + 2 \(⋮\)\(\Rightarrow\)2(30n + 2) \(⋮\)\(\Rightarrow\)60n + 4 \(⋮\)d

\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d

\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d

\(\Rightarrow\)\(⋮\)\(\Rightarrow\)\(\subset\){ 1 ; -1 }

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản

29 tháng 5 2018

Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố

=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1

Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z

Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z