A=1-3+3^2-3^3+...+-3^2011+3^2012.
Chứng minh (4A-1) là lũy thừa của 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 - 3 + 32 - 33 + ... - 32011 + 32012
3A = 3( 1 - 3 + 32 - 33 + ... - 32011 + 32012 )
= 3 - 32 + 33 - 34 + ... - 32012 + 32013 )
=> 4A = 3A + A
= ( 3 - 32 + 33 - 34 + ... - 32012 + 32013 ) + ( 1 - 3 + 32 - 33 + ... - 32011 + 32012 )
= 3 - 32 + 33 - 34 + ... - 32012 + 32013 + 1 - 3 + 32 - 33 + ... - 32011 + 32012
= ( 3 + 1 - 3 ) + ( 32 - 32 ) + ( 33 - 33 ) + ... + ( 32012 - 32012 ) + 32013
= 1 + 32013
4A - 1 <=> 1 + 32013 - 1 = 32013
=> đpcm
Từng bài 1 thôi nhs!
a) 3A = 3 - 32 + 33 - 34 + ... -32004+ 32005
3A + A = 3 - 32 + 33 -34 + ... -32004 + 32005 +1 - 3 + 32- 33 + 34 - ....-32003+32004
4A = 32005 + 1
=> 4A - 1 = 32005 là lũy thừa của 3
=> ĐPCM
đề có thiếu ko đó
A = 4 + 23 + 24 + 25 + ...+ 22003 + 22004
đặt B = 23 + 24 + 25 + ...+ 22003 + 22004
2B= 24 + 25 + 26 + ....+ 22004 + 22005
2B-B= ( 24 + 25 + 26 + ....+ 22004 + 22005 ) - ( 23 + 24 + 25 + ...+ 22003 + 22004 )
B = 24 + 25 + 26 + ....+ 22004 + 22005 - 23 - 24 - 25 - ...- 22003 - 22004
B = 22005 - 23
B = 22005 - 8
=> A = 4 + B = 4 + 22005 - 8 = 22005 - 4 = .....
Ta có: \(A=1-3+3^2-3^3+...-3^{2017}+3^{2018}\)
\(=>3A=3-3^2+3^3-3^4+...-3^{2018}+3^{2019}\)
\(=>3A+A=1+3^{2019}\)
\(=>4A-1=3^{2019}\)
=>4A-1 là một lũy thừa của 3 =>(đpcm)
Hj, tự nhiên hôm nay chăm rồi làm thoy mak Đặng Quốc Huy
3A = 3 - 3^2 + 3^3 - 3^4 + ... -3^2004 + 3^2005
3A + A = 3 - 3^2 + 3^3 -3^4 + ... -3^2004 + 3^2005 +1 - 3 + 3^2- 3^3 + 3^4 - ....-3^2003+3^2004
4A = 3^2005 + 1
=> 4A - 1 = 3^2005 là lũy thừa của 3 => ĐPCM
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2
a, Có 2A = 4.2+2^3+2^4+...+2^21
A=2A-A=(4.2+2^3+2^4+...+2^21)-(4+2^2+2^3+...+2^20) = 4.2 + 2^21 - 4 - 2^2 = 2^21
=> A là lũy thừa cơ số 2
b, Có 3A=3^2+3^3+3^4+...+3^101
2A=3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+....+3^100) = 3^101-3
=> 2A+3 = 3^101-3+3 = 3^101
=> A là lũy thừa của 3
k mk nha
C3:
Gọi UCLN(12n + 1 ; 30n + 2) là d
Ta có : 12n + 1 \(⋮\)d \(\Rightarrow\)5(12n + 1) \(⋮\)d \(\Rightarrow\)60n + 5 \(⋮\)d
30n + 2 \(⋮\)d \(\Rightarrow\)2(30n + 2) \(⋮\)d \(\Rightarrow\)60n + 4 \(⋮\)d
\(\Rightarrow\)( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d
\(\Rightarrow\)60n + 5 - 60n - 4 \(⋮\)d
\(\Rightarrow\)1 \(⋮\)d \(\Rightarrow\)d \(\subset\){ 1 ; -1 }
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản
Gọi d thuộc Ư C ( 12n + 1 ; 30n + 2 ) ; d nguyên tố
=> \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\)d => 1 \(⋮\)d => d thuộc Ư ( 1 ) mà d nguyên tố => d = 1
Do đó phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Vậy phân số 12n+1/30n+2 tối giản với mọi n thuộc Z
Ta có : \(A=1-3+3^2-3^3+...+3^{2010}-3^{2011}+3^{2012}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+....+3^{2011}-3^{2012}+3^{2013}\)
\(\Rightarrow3A+A=3^{2013}+1\)
\(\Rightarrow4A=3^{2013}+1\)
\(\Rightarrow4A-1=3^{2013}\) là lũy thừa bậc 3. (đpcm)
3.A=3 .\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)
3.A= \(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)
3A+A=\(3-3^2+3^3-3^4+..-3^{2012}+3^{2013}\)+\(\left(1-3+3^2-3^3+...-3^{2011}+3^{2012}\right)\)
4A= \(1+3^{2013}\)
nên 4A-1=32013
Vậy 4A-1 là lũy thừa của 3