tìm x thuộc z, biết: x+(x+1)+(x+2)+(x+3)+.....+2019+2020=2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2020+2019+...+\left(x+2\right)+\left(x+1\right)+x=2020\)
\(\Leftrightarrow2019+2018+...+\left(x+1\right)+x=0\)
Xét dãy :\(A=2019+...+\left(x+1\right)+x\)
Dãy gồm \(\left(2020-x\right)\) số hạng
Có :\(A=\frac{\left(2019-x\right)\left(2020-x\right)}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2019+x=0\\2020-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2019\\x=2020\end{matrix}\right.\)
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
Lời giải:
$\frac{x+2}{2020}+\frac{x+2}{2020}=\frac{x+2019}{3}+\frac{x+2020}{2}$
$\frac{x+2}{2020}+1+\frac{x+2}{2020}+2=\frac{x+2019}{3}+1+\frac{x+2020}{2}+1$
$\frac{x+2022}{2020}+\frac{x+2022}{2020}=\frac{x+2022}{3}+\frac{x+2022}{2}$
$(x+2022)(\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2})=0$
Dễ thấy $\frac{1}{2020}+\frac{1}{2020}-\frac{1}{3}-\frac{1}{2}<0$
Do đó: $x+2022=0$
$\Rightarrow x=-2022$
\(\Leftrightarrow\dfrac{x-2}{2020}-1+\dfrac{x-3}{2019}-1=\dfrac{x-2019}{3}-1+\dfrac{x-2020}{2}-1\)
=>x-2022=0
hay x=2022
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 + 2020 = 2020
Ta gọi biểu thức đấy là B
x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 = 2020 - 2020
x + (x + 1) + (x + 2) + (x + 3) + ..... + 2019 = 0
Có 2020 - x số hạng
B = \(\frac{\text{(2019 − x)(2020 - x)}}{\text{2}}=0\)
=> 2019 + x = 0
x = -2019
=> 2020 - x = 0
x = 2020
➤ Vậy x = {-2019; 2020}