Rút gọn \(A=\frac{x^3+y^3+z^3-3xyz}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi tử thức ta đc:
x3 - y3 + z3 + 3xyz
= (x - y)3 + z3 + 3x2y - 3xy2 + 3xyz
= (x - y + z) [ (x - y)2 - (x - y)z + z2 ] + 3xy(x - y + z)
= (x - y + z)(x2 - 2xy + y2 - xz + yz + z2 + 3xy)
= (x - y + z)(x2 + y2 + z2 + xy + yz - xz)
Biến đổi mẫu thức ta đc:
(x + y)2 + (y + z)2 + (z - x)2
= x2 + 2xy + y2 + y2 + 2yz + z2 + z2 - 2xz + x2
= 2(x2 + y2 + z2 + xy + yz - xz)
Vậy A = \(\frac{\left(x-y+z\right)\left(x^2+y^2+z^2+xy+yz-xz\right)}{2\left(x^2+y^2+z^2+xy+yz-xz\right)}\)\(=\frac{x-y+z}{2}\)
Dat (x-y)2+(y-z)2+(x-z)2=A
=(x+y)3+z3-3x2y-3xy2-3xyz / A
=(x+y+z).(x2+2xy+y2-xy-yz+z2)-3xy(x+y+z) / A
=(x+y+z).(x2+y2+z2-xy-yz-xz) /A
=2(x+y+z).(x2+y2+z2-xy-yz-xz) /2A
=(x+y+z)[ (x2-2xy+y2)+(y2-2yz+z2)+(x2-2xz+z2) / 2A
=(x+y+z).[ (x-y}2+(y-z)2+(x-z)2 ] /2A
=(x+y+z). A /2A
=x+y+z /2
bạn giải đúng bài này giúp mk thì mk tick