K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

\(\frac{1}{\sqrt{x}+1}\)><

NV
25 tháng 9 2020

ĐKXĐ: \(x\ge-2\)

- Với \(-2\le x< 0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}>1\Rightarrow\sqrt{x^2+1}-x>1\\\sqrt{x+3}\ge1\Rightarrow\sqrt{x+2}+\sqrt{x+3}\ge1\end{matrix}\right.\)

\(\Rightarrow\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x+2}+\sqrt{x+3}\right)>1\) pt vô nghiệm

- Với \(x\ge0\)

\(\Leftrightarrow\frac{1}{\sqrt{x^2+1}+x}\left(\sqrt{x+2}+\sqrt{x+3}\right)=1\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x+3}=x+\sqrt{x^2+1}\)

\(\Leftrightarrow\sqrt{x^2+1}-\sqrt{x+3}+x-\sqrt{x+2}=0\)

\(\Leftrightarrow\frac{x^2-x-2}{\sqrt{x^2+1}+\sqrt{x+3}}+\frac{x^2-x-2}{x+\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+\frac{1}{x+\sqrt{x+2}}\right)=0\)

\(\Leftrightarrow x^2-x-2=0\Leftrightarrow x=2\)

Vậy pt có nghiệm duy nhất \(x=2\)

25 tháng 9 2020

Dạ em cảm ơn Anh ạ

NV
4 tháng 8 2020

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x+y+z}{x\left(y+z\right)}=\frac{1}{2}\\\frac{x+y+z}{y\left(z+x\right)}=\frac{1}{3}\\\frac{x+y+z}{z\left(x+y\right)}=\frac{1}{4}\end{matrix}\right.\) lần lượt chia vế cho vế ta được hệ:

\(\left\{{}\begin{matrix}\frac{y\left(z+x\right)}{x\left(y+z\right)}=\frac{3}{2}\\\frac{z\left(x+y\right)}{x\left(y+z\right)}=2\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\yz=2xy+xz\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2yz=xy+3zx\\3yz=6xy+3zx\end{matrix}\right.\)

\(\Rightarrow yz=5xy\Rightarrow z=5x\)

Thế vào \(yz=2xy+zx\Rightarrow5xy=2xy+5x^2\)

\(\Leftrightarrow3xy=5x^2\Rightarrow y=\frac{5x}{3}\)

Thế vào pt đầu: \(\frac{1}{x}+\frac{1}{\frac{5x}{3}+5x}=\frac{1}{2}\Rightarrow\frac{23}{20x}=\frac{1}{2}\Rightarrow x=\frac{23}{10}\)

\(\Rightarrow y=\frac{23}{6};z=\frac{23}{2}\)

4 tháng 8 2020

Dạ em cảm ơn ạ.

9 tháng 3 2022

Mọi người ơi, giúp em với ạ!

 

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

29 tháng 5 2021

ĐK: \(x\le3\)

Đặt \(a=\sqrt{3-x}\left(a\ge0\right)\) \(\Leftrightarrow3-a^2=x\)

Pttt: \(x^3+\left(3-a^2\right)\left(1+a\right)=4a\)

\(\Leftrightarrow x^3-a^3-a^2-a+3=0\)

\(\Leftrightarrow x^3-a^3+\left(3-a^2\right)-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2\right)+\left(x-a\right)=0\)

\(\Leftrightarrow x-a=0\) \(\Leftrightarrow x=a\) \(\Leftrightarrow x=\sqrt{3-x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=3-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1+\sqrt{13}}{2}\)(thỏa)

Vậy...

NV
11 tháng 10 2020

a/

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x-1}=a\\\sqrt[3]{27-14x}=b\end{matrix}\right.\) ta được hệ:

\(\left\{{}\begin{matrix}2a+b=1\\14a^3+b^3=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-2a\\14a^3+b^3=13\end{matrix}\right.\)

\(\Rightarrow14a^3+\left(1-2a\right)^3=13\)

\(\Leftrightarrow a^3+2a^2-a-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\\x-1=-8\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ ĐKXĐ: ...

\(VT=\sqrt{x-2}+\sqrt{4-x}\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=\left(x-3\right)^2+2\ge2\)

Đẳng thức xảy ra khi và chỉ khi \(x=3\)

29 tháng 10 2020

Dạ em cảm ơn ạ

a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)

=>3(3x+2)-4(3x+1)=10

=>9x+6-12x-4=10

=>-3x+2=10

=>-3x=8

=>x=-8/3

b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)

=>(x-1)(x-2)-x(x+2)=-9x+10

=>x^2-3x+2-x^2-2x=-9x+10

=>-5x+2=-9x+10

=>x=2(loại)