cho tam giác abc vuông tại a ab=9cm bc=15cm.Tính sinc và tanB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=17\left(cm\right)\)
\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{15}{17};\tan\widehat{B}=\dfrac{AC}{AB}=\dfrac{15}{8}\)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
\(a,cosC=\dfrac{5}{13}\\ Ta,có:cos^2C+sin^2C=1\\ \Rightarrow sinC=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\\ cosB+sinC=1\\ \Leftrightarrow cosB+\dfrac{12}{13}=1\\ \Rightarrow cosB=\dfrac{1}{13}\\ tanC=\dfrac{sinC}{cosC}=\dfrac{\dfrac{12}{13}}{\dfrac{5}{13}}=\dfrac{12}{5}\)
\(b,tanB=\dfrac{1}{5}\Rightarrow\dfrac{sinB}{cosB}=\dfrac{1}{5}\Rightarrow cosB=5sinB\\ E=\dfrac{sinB-3cosB}{2sinB+3cosB}=\dfrac{sinB-3.5.sinB}{2sinB+3.5.sinB}=\dfrac{-14sinB}{17sinB}=-\dfrac{14}{17}\)
\(SinC=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
Áp dụng Pi-ta-go cho tam giác ABC ta có:
\(AB^2+AC^2=BC^2\\ \Rightarrow9^2+AC^2=15^2\\ \Rightarrow AC=12\)
\(TanB=\dfrac{AC}{AB}=\dfrac{12}{9}=\dfrac{4}{3}\)