K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2020

B A C D M H F

a) Áp dụng định lí py-ta-go vào tam giác ABC , ta có :

\(BC^2=AB^2+AC^2\)

\(BC^2=3^2+4^2\)

\(\Leftrightarrow BC=\sqrt{9+16}=\sqrt{25}=5\left(cm\right)\)

b) Vì AM là đường trung tuyến 

Mà BC là cạnh huyền

=> AM = BM = CM 

MÀ AM = MD

=> AM = MD = BM = CM

<=> AM + MD = BM + MC

<=> AD = BC .

Xét tứ giác ABDC có : AD = BC và AD cắt BC tại trung điểm M của mỗi đường

=> ABDC là hình chữ nhật 

=> AB = CD ; AB // CD

24 tháng 2 2018

Mình làm câu đầu tiên nhé :)

a) Xét tam giác ABM và tam giác DMC có :

BM = CM ( gt )

\(\widehat{AMB}=\widehat{DMC}\)

AM = DM ( gt )

\(\Rightarrow\)\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

\(\Rightarrow\)\(\widehat{BAM}=\widehat{DCM}\)( 2 góc tương ứng bằng nhau )

Mà 2 góc này ở vị trí so le trong nên suy ra AB // CD 

Cho tam giác ABC vuông tại A, có AB = 3 cm, AC = 4 cm. Gọi AM là đường trung tuyến (M BC), trên tia đối của tia MA lấy điểm D sao cho AM = MD.

a) Tính độ dài BC. 

b) Chứng minh AB = CD, AB // CD.

c) Chứng minh góc BAM > góc CAM.

d)gọi H là trung điểm của BM trên đường thẳng AH lấy E sao cho AH=HE,CE cắt AD tại F.Chứng minh F là trung điểm của CE

1 tháng 5 2016

NhOk ChỈ Là 1 FaN CuỒnG CủA KhẢi thích chép lại đề lắm à 

14 tháng 6 2019

a ) Do AM là trung tuyến => BM = CM

Xét \(\Delta ABM\)và \(\Delta DCM\)có :

BM = CM ( cm trên )

\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)

MA = MD ( gt )

nên \(\Delta ABM=\Delta DCM\)( c.g.c )

=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )

mà hai góc này lại ở vị trí so le trong => AB//CD

14 tháng 6 2019

A B C D M K Q N I

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

Do đó:ABDC là hình bình hành

=>AB//CD và AB=CD

b: Xét ΔABD có

AF,BM là trung tuyến

AF cắt BM tại I

=>I là trọng tâm

=>BI=2/3BM=2/3*1/2BC=1/3BC

Xét ΔACD có

DE,CM là trung tuyến

DE cắt CM tại K

Do đó: K là trọng tâm

=>CK=2/3CM=2/3*1/2*BC=1/3BC
c: BI+IK+KC=BC

=>1/3BC+IK+1/3BC=BC

=>IK=1/3BC

=>BI=IK=KC

d: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

=>AD cắt EF tại trung điểm của mỗi đường

=>E,M,F thẳng hàng

13 tháng 12 2020

a)

Sửa đề: Chứng minh ΔABM=ΔACM

Xét ΔABM và ΔACM có 

AB=AC(gt)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

Ta có: AB=AC(gt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

b) Xét ΔABM vuông tại M và ΔDCM vuông tại M có 

MB=MC(M là trung điểm của BC)

AM=DM(gt)

Do đó: ΔABM=ΔDCM(hai cạnh góc vuông)

\(\widehat{ABM}=\widehat{DCM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{DCM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)