Tìm số nguyên n sao cho 2n – 1 là bội của n + 3.
giúp mình bài này nữa đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:2n-1 là bội của n+3
=>2n-1\(⋮\)n+3
=>2(n+3)-7
Mà 2(n+3)\(⋮\)n+3 và 2n-1\(⋮\)n+3 nên
=>7\(⋮\)n+3
=>n+3\(\in\)Ư(7)={1;7}
=>n\(\in\){-2;5}
2n -1 là bội của n + 3
2n + 6 - 7 là bội của n + 3
7 là bội của n + 3
n + 3 thuộc U(7) = {-7;-1;1;7}
n + 3 = -7 => n = -10
n + 3 = -1 => n = -4
n + 3 = 1 => n = -2
n+ 3 = 7 => n = 4
Vậy n thuộc {-10 ; -4 ; -2 ; 4}
=>2n-1 chia het cho n+3
=>2.(n+3)-7 chia het cho n+3
=>7 chia het cho n+3
=>n+3 E Ư(7)={-1;1;-7;7}
=> n E {-4;-2;-10;4}
\(n+10⋮n-1\)
\(\Rightarrow\left(n-1\right)+11⋮n-1\)
Mà \(\left(n-1\right)⋮n-1\)
\(\Rightarrow11⋮n-1\)
\(\Rightarrow n-1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n-1\in\left\{1;-1;11;-11\right\}\)
\(\Rightarrow n\in\left\{2;0;12;-10\right\}\)
Vậy n = -10 ; 0 ;2 ; 12
a,n +10 là bội của n- 1
⇒n +10 ⋮n- 1
⇒n- 1 +11⋮n- 1
Mà n- 1⋮n- 1 nên 11 ⋮n- 1
⇒n- 1 ∈Ư(11) ={1;-1;-11;11}
⇒n- 1 ∈{1;-1;-11;11}
⇒n ∈{2;0;-10;12}
Vậy n ∈{2;0;-10;12}
Bài 1 ( x - 7 ) ( x + 3 ) < 0
\(\Rightarrow\hept{\begin{cases}x-7< 0\\x+3>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-7>0\\x+3< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 7\\x>-3\end{cases}}\) hoăc \(\hept{\begin{cases}x>7\\x< -3\end{cases}}\) ( vô lí )
\(\Rightarrow\) - 3 < x < 7
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
Bài 2 n - 1 là bội của n + 5 và n + 5 là bội của n - 1
Là 2 bài riêng biệt ak ????
Bài 3 : Tìm a,b. thuộc Z biết ab = 24 ; a + b = -10 ~~~~~ Lát nghĩ
Bài 4 : Tìm các cặp số nguyên có tổng bằng tích ~~~~~ tối lm
Để 2n-1 là bội của n+3 thì
\(2n-1⋮n+3\)
\(\Leftrightarrow2n+6-7⋮n+3\)
mà \(2n+6⋮n+3\)
nên \(-7⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(-7\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-2;-4;4;-10\right\}\)
Vậy: \(n\in\left\{-2;-4;4;-10\right\}\)
Để 2n-1 là bội của n+3 thì
2n−1⋮n+3
⇔2n+6−7⋮n+3⇔2n+6−7⋮n+3
mà 2n+6⋮n+32n+6⋮n+3
nên −7⋮n+3−7⋮n+3
⇔n+3∈Ư(−7)⇔n+3∈Ư(−7)
⇔n+3∈{1;−1;7;−7}⇔n+3∈{1;−1;7;−7}
hay n∈{−2;−4;4;−10}n∈{−2;−4;4;−10}
Vậy: n∈{−2;−4;4;−10}
2n-1 \(⋮\)n+3
=> n+3 \(⋮\)n+3
=> (2n-1)- (n+3) \(⋮\)n+3
=> (2n-1) - 2(n+3) \(⋮\)n+3
=> 2n-1 - 2n-3 \(⋮\)n+3
=> -4 \(⋮\)n+3
=> n+3 \(\in\)Ư(4) ={ 1;2; 4; -1; -2; -4}
=> n \(\in\){ -2; -1; 1; -4; -5; -7}
Vậy....
Vì 2n - 1 là bội của n + 3 => 2n - 1 ⋮ n + 3
Ta có: n + 3 ⋮ n + 3
=> 2( n + 3 ) ⋮ n + 3
<=> 2n + 6 ⋮ n + 3
=> [( 2n + 6 ) - ( 2n - 1 )] ⋮ n + 3
=> [ 2n + 6 - 2n + 1] ⋮ n + 3
<=> 7 ⋮ n + 3
=> n + 3 € Ư(7)
=> n + 3 € { - 7 ; - 1 ; 1 ; 7 }