Rút gọn biểu thức 8 - (y + 43) + 188−(y+43)+18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = 7 - 4 3 + 1 2 - 3 = 2 - 3 + 2 + 3 = 4
b, B = sin 2 19 0 + cos 2 19 0 + tan 19 0 - c o t 71 0
= sin 2 19 0 + cos 2 19 0 + tan 19 0 - tan 19 0 = 1
\(N=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{2^{12}.3^{10}+2^9.3^9.3.5.2^3}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3-1\right)}=\frac{2^{12}.3^{10}.2.3}{2^{11}.3^{11}.5}=\frac{2^{11}.3^{11}.2^2}{2^{11}.3^{11}.5}=\frac{4}{5}\)
\(1,\left(x+y\right)^2-\left(x-y\right)^2=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)+\left(x-y\right)\right]=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
\(2,\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
\(3,\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\\ =\left[\left(x+y\right)-\left(x-y\right)\right]^2\\ =\left(x+y-x+y\right)^2\\ =4y^2\)
\(4,\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\\ =\left[\left(2x+3\right)-\left(2x+5\right)\right]^2\\ =\left(2x+3-2x-5\right)^2\\ =\left(-2\right)^2\\ =4\)
\(5,9^8.2^8-\left(18^4+1\right)\left(18^4-1\right)\\ =18^8-\left[\left(18^4\right)^2-1\right]\\ =18^8-18^8+1\\ =1\)
1: =x^2+2xy+y^2-x^2+2xy-y^2=4xy
2: =x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3-2y^3
=6x^2y
3: =(x+y-x+y)^2=(2y)^2=4y^2
4: =(2x+3-2x-5)^2=(-2)^2=4
5: =18^8-18^8+1=1
a) \(A=1+3+3^2+...+3^{100}\)
\(3A=3+3^2+3^3+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...-2^3+2^2-2+1\)
\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...-2^4+2^3-2^2+2\)
\(B+2B=\left(2^{100}-2^{99}+...-2+1\right)+\left(2^{101}-2^{100}+...-2^2+2\right)\)
\(3B=2^{101}+1\)
\(B=\frac{2^{101}+1}{3}\)