K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Ta có f(1)=a.12+b.1+c=a+b+c=0

f(-1)=a.(-1)2+b.(-1)+c=a-b+c=0

Ta có f(1)-f(-1)=(a+b+c)-(a-b+c)=a+b+c-a+b-c=2b=0

=>b=0

Thay b=0 vào f(1) ta có a+c=0

Vậy a và c là 2 số đối nhau

9 tháng 4 2017

cảm ơn bạn

11 tháng 4 2018

Vì nếu x = 1 và x = -1 là nghiệm của đa thức f(x) 

=> f(1) = 0 và f(-1) = 0

Ta có: 

  f(1) = a + b + c = 0

và f(-1) = a - b + c =0 

=> f(1) + f(-1) = a + b + c + a - b + c = 0

=> 2a + 2c = 0 

=> a + c = 0

=> a và c trái dấu

Vậy:  a và c là 2 số đối nhau

25 tháng 4 2017

Bạn vô câu hỏi tương tự xem nhé.

8 tháng 5 2017

Vì x=1, x=-1 là ngiệm của đa thức f(x) nên

a.1^2+b.1+c=a.(-1)^2+b.(-1)+c=0                 

=>a+b+c=a-b+c=0                             (1)

=>b=-b

=>b=0

thay b=0 vào (1) ta có a+c=0

=>a và c là 2 số đối nhau

8 tháng 5 2017

k cho mình

28 tháng 2 2019

Do f(x) nhận 1 là nghiệm nên\(f\left(1\right)=a+b+c=0\)

Do f(x) nhận -1 là nghiệm nên\(f\left(-1\right)=a-b+c=0\)

\(\Rightarrow\left(a+b+c\right)+\left(a-b+c\right)=0\)

\(\Rightarrow2\left(a+c\right)=0\)

\(\Rightarrow a=-c\)

Nên a và c là 2 số đối nhau

 
12 tháng 3 2020

\(f\left(x\right)=ax^2+bx+c\)

\(f\left(1\right)=a+b+c=0\)

\(f\left(-1\right)=a-b+c=0\)

\(\Leftrightarrow f\left(1\right)+f\left(-1\right)=a+b+c+a-b+c=0\)

\(\Leftrightarrow2a+2c=0\)

\(\Leftrightarrow2a=-2c\)

\(\Leftrightarrow a=-c\)

\(\Rightarrowđpcm\)

25 tháng 4 2016

Nếu f(x) nhận 1 làm nghiệm

=>\(f\left(x\right)=a.1^2+b.1+c=a+b+c=0\Rightarrow a+c=-b\left(1\right)\)

Nếu f(x) nhận -1 làm nghiệm

=>\(f\left(x\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c=0\Rightarrow a+c=b\left(2\right)\)

Lấy (1)+(2),vế theo vế

=>a+c=0

=>a và c là 2 số đối nhau   (đpcm)