K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Xét \(\Delta\)BAD vuông tại A và \(\Delta\)EBD vuông tại E có

BD là cạnh chung

\(\widehat{ABD}=\widehat{EBD}\)(do BD là đường phân giác của \(\Delta\)ABC)

Do đó: \(\Delta\)BAD=\(\Delta\)EBD(cạnh huyền-góc nhọn)

\(\Rightarrow\)DA=DE(hai cạnh tương ứng)

2) Xét \(\Delta\)ADF và \(\Delta\)EDC có

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

DF=DC(gt)

Do đó: \(\Delta\)ADF=\(\Delta\)EDC(c-g-c)

\(\Rightarrow\widehat{DAF}=\widehat{DEC}\)(hai góc tương ứng)

\(\widehat{DEC}=90^0\)(do DE\(\perp\)BC)

nên \(\widehat{DAF}=90^0\)

Ta có: \(\widehat{BAF}=\widehat{BAD}+\widehat{DAF}=90^0+90^0=180^0\)

nên B,A,F thẳng hàng(đpcm)

3)Ta có: \(\Delta\)BAD=\(\Delta\)EBD(cmt)

\(\Rightarrow\)BA=BE(hai cạnh tương ứng)

Ta có: \(\Delta\)DAF=\(\Delta\)EDC(cmt)

\(\Rightarrow\)AF=EC(hai cạnh tương ứng)

Ta có: BA+AF=BF(B,A,F thẳng hàng)

BE+EC=BC(do B,E,C thẳng hàng)

mà BA=BE(cmt)

và AF=EC(cmt)

nên BF=BC

Xét \(\Delta\)BFC có BF=BC(cmt)

nên \(\Delta\)BFC cân tại B(đ/n tam giác cân)

mà BD là đường phân giác ứng với cạnh đáy FC(do BD là tia phân giác của \(\widehat{FBC}\)

nên BD cũng là đường trung trực ứng với cạnh FC(định lí tam giác cân)

hay BD là đường trung trực của FC(đpcm)

15 tháng 8 2023

A B C D E F H

a/

Xét tf vuông ABD và tg vuông EBD có

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BD chung

=> tg ABD = tg EBD (Hai yg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AD=DE

b/

Gọi H là giao của BD và AE

Xét tg ABH và tg EBH có

tg ABD = tg EBD (cmt) => AB=EB

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BH chung

=> tg ABH = tg EBH (c.g.c) => HA=HE (1)

\(\Rightarrow\widehat{AHB}=\widehat{EHB}\) mà \(\widehat{AHB}+\widehat{EHB}=\widehat{AHE}=180^o\)

\(\Rightarrow\widehat{AHB}=\widehat{EHB}=90^o\Rightarrow BD\perp AE\) (2)

Từ (1) và (2) => BD là đường trung trực của AE

c/

Gọi F' là giao của AB và DE

Xét tg vuông F'EB và tg vuông ABC có

\(\widehat{BF'E}=\widehat{BCA}\) (cùng phụ với \(\widehat{ABC}\) )

AB=EB (cmt)

=> tg F'EB = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> BF=BC

Xét tg F'BD và tg CBD có

BF'=BC

\(\widehat{ABD}=\widehat{EBD}\) (gt)

BD chung

=> tg F'BD = tg CBD (c.g.c) => DF' = DC

Mà DF = DC \(\Rightarrow F\equiv F'\) =>A, B, F thẳng hàng

d/

Xét tg BCF có

\(CA\perp BF;FE\perp BC\) => D là trực tâm của tg BCF

\(\Rightarrow BD\perp CF\) (trong tg 3 đường cao đồng quy)

 

 

10 tháng 12 2023

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: ΔABD=ΔEBD

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

Xét ΔDAF và ΔDEC có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DF=DC

Do đó: ΔDAF=ΔDEC

=>AF=CE

c: Ta có: ΔDAF=ΔDEC

=>\(\widehat{DAF}=\widehat{DEC}\)

mà \(\widehat{DEC}=90^0\)

nên \(\widehat{DAF}=90^0\)

Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)

=>\(\widehat{BAF}=90^0+90^0=180^0\)

=>B,A,F thẳng hàng

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

3 tháng 5 2016

C2 

Xét tam giác ADF và tam giác EDC có : 

DA = DE ( Cmt ) 

DEF = DEC 

AF = EC ( Cmt ) 

=) ........ ( c.g.c ) 

=) ADF = EDC ( ...)

mà :  EDC + EDA = 180 ĐỘ

=)  EDA + ADF = 180 độ 

=) E D F thẳng hàng 

k cko mk ddi

2 tháng 5 2016

xem lại đề : sao BD _|_ BC đc?

6 tháng 7 2018

Câu d nè bn.

d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)

➡️Góc ABC = 60°

mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)

➡️∆ BFC đều

➡️BC = FC = FB

✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)

➡️AB = 1/2 BC (t/c)

➡️BC = 2 AB

Theo Pitago ta có: 

BC 2 = AB 2 + AC 2

➡️(2 AB) 2 = AB 2 + AC 2 

➡️4 AB 2 - AB 2 = AC 2

➡️3 AB 2 = AC 2

➡️3 AB 2 = 25

➡️AB 2 = 25 ÷ 3 = 25/3

Vậy ta có: BC 2 = 25/3 + 25 = 100/3

➡️BC = √100/3

mà BC = FC (cmt)

➡️FC = √100/3

Vậy đó, hok tốt nhé

25 tháng 4 2022

Bạn nào biết làm giúp mình với !!!(kiêm luôn vẽ hình)