Chứng minh rằng A=(1+2+2^2+2^3+......+2^99) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(100+1\right)\cdot100}{2}=101\cdot50⋮2\)
\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)
\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)
\(A=2\cdot3+...+2^{99}\cdot3\)
\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)
2 ý kia tương tự
Giải:
Đặt S=(2+2^2+2^3+...+2^100)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296
=2.31+26.31+...+296.31
=31.(2+26+...+296)\(⋮\)31
Phương pháp giải dạng tống quát :
Muốn chứng minh A \(⋮̸\) b ta cần biến đổi A = kb + r ( k \(\in\) Z; r \(⋮̸\) b)
Áp dụng :
A = 1 + 2 + 22 + 23 +....+299
A = 1 + ( 2+22 + 23 ) + .....+ ( 297 + 298 + 299)
A = 1 + 14 +.......+ 296.( 2 + 22 + 23)
A = 1 + 14. ( 20 +....+296)
vì 14 \(⋮\) 7 => 14.( 20 +.....+296) \(⋮\) 7
1 \(⋮̸\) 7
Cộng vế với vế ta được : 1 + 14.(20 + ....296) \(⋮̸\) 7
Hay A = 1 + 2 + 22 + 23 + 24 +......299 \(⋮̸\) 7 (đpcm)
\(2+2^2+...+2^{100}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{99}\right)\\ =3\left(2+2^3+...+2^{99}\right)⋮3\)
Mk đang hỏi tại sao lại có phần (1+2) mà bạn. Bạn biết thì chỉ mk với
Ta có :
a . A = 1 + 3 + 32 + 33 + ... + 399
= ( 1 + 3 ) + ( 32 + 33 ) + ( 34 + 35 ) + ... + ( 398 + 399 )
= 1. ( 1 + 3 ) + 32 . ( 1 + 3 ) + 34 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )
= 1 . 4 + 32 . 4 + 34 . 4 + ... + 398 . 4
= ( 1 + 32 + 34 + ... + 398 ) .4 \(⋮\)4 ( đpcm ) .
b . Vì 164 = 41 . 4
Nên nếu A chia hết cho 41 thì A cũng chia hết cho 164 ( do A chia hết cho 4 )
C/M C\(⋮\)4
\(C=1+3+3^2+...+3^{99}⋮4\)
\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)
\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)
\(C=4+3^2.4+...+3^{98}.4⋮4\)
\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)
C/M C\(⋮\)40
\(C=1+3+3^2+...+3^{99}⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)
\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)
\(C=40.1+...+3^{96}.40⋮40\)
\(C=40.\left(1+...+3^{96}\right)⋮40\)
A= 1+2+3+...+1995
=1995+(1+1994)+(2+1993)+...+(996+999)+(997+998)
=1995+1995+1995+...+1995+1995
=1995x998\(⋮1995\)
\(\left(1+2+2^2+2^3+...+2^{99}\right)\) )
= \(\left(1+2\right)+2^2\left(1+2\right)+2^3\left(1+2\right)+2^{98}\left(1+2\right)\)
=\(3+2^2.3+2^3.3+...+2^{98}.3\)\(⋮3\)(đccm)
A= 1+2+22+...+299
A=( 1+2)+(22+23)+....+(298+299)
A=1(1+2)+ 22(1+2)+....+298(1+2)
A= 1.3 + 22..3+.......+299.3
A= 3 ( 1+22+....+299)
Vì 3:3 nên 3 3 ( 1+22+....+299) chia hết cho 3
Vậy...