K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

Đk để hệ pt có nghiệm duy nhất: \(\frac{2}{m}\ne\frac{-1}{2}\Leftrightarrow m\ne-4\)

Ta có: \(\hept{\begin{cases}2x-y=8\\mx+2y=m+3\end{cases}\Leftrightarrow\hept{\begin{cases}4x-2y=16\\mx+2y=m+3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(4+m\right)x=m+19\\2x-y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2x-8\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2\cdot\frac{m+19}{m+4}-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{2m+38-8m-32}{m+4}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{6-6m}{m+4}\end{cases}}\)

Với m khác -4 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{m+19}{m+4};\frac{6-6m}{m+4}\right)\)

Ta có:\(x+y=\frac{m+19}{m+4}+\frac{6-6m}{m+4}=\frac{m+19+6-6m}{m+4}=\frac{25-5m}{m+4}\)

Để  \(x+y>0\Leftrightarrow\frac{25-5m}{m+4}>0\)

TH1: \(\hept{\begin{cases}25-5m>0\\m+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}5m< 25\\m>-4\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 5\\m>-4\end{cases}}\Leftrightarrow-4< m< 5\) (tm)

TH2: \(\hept{\begin{cases}25-5m< 0\\m+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}5m>25\\m< -4\end{cases}\Leftrightarrow}\hept{\begin{cases}m>5\\m< -4\end{cases}}}\) (loại)

Vậy...

16 tháng 3 2020

1:
a)\(\hept{\begin{cases}nx+x=5 \\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)
 

12 tháng 2 2018

từ \(\hept{\begin{cases}x< 1\\y< 6\end{cases}}\)ta có: \(\hept{\begin{cases}2x+y< 8\\3x+2y< 15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}3m+1< 8\\2m-3< 15\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{7}{3}\\m< 9\end{cases}}\Rightarrow m< \frac{7}{3}\)

Vậy hệ phương trình thỏa mãn khi m<7/3

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữbài 2: 1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đób) tìm a để hệ phương...
Đọc tiếp

bài 1: Trong b​uổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ

bài 2: 

1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó

b) tìm a để hệ phương trình vô nghiệm

2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)

a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a

b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1

c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên

bài 3:

1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)

2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm

 

 

0
12 tháng 2 2018

\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)

từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)

thay \(\left(3\right)\) vào  \(\left(2\right)\)ta được 

\(2.\left(4-y\right)+3y=m\)

\(8-2y+3y=m\)

\(8+y=m\)

\(y=m-8\) \(\left(4\right)\)

hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\)  có nghiệm duy nhất 

ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)

vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm  \(\left(x;y\right)=\left(4-y;m-8\right)\)

theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)

vậy \(m< 8\)  là tập hợp các giá trị cần tìm 

12 tháng 2 2018

Ta có :

\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)

\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)

\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)

Thoả mãn \(x>0;y< 0\)

Vậy \(x=8\) và \(y=-4\)