Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thế vào phương trình 2x +my = 8 ta được. 2(m-2y) +my = 8 => -4y +my = 8-2m => (m-4)y = 8-2m.
Nếu m = 4 => 0.y = 0 luôn đúng => hệ có vô số nghiệm.
Nếu m khác 4 => y = (8-2m)/ (m-4 ) => x = m -2(8-2m)/ (m-4) = (m2 -16)/ (m-4). Khi đó, hệ có nghiệm duy nhất.
Vậy hệ đã cho có nghiệm với mọim, và khi m khác 4 thì hệ ...
Ta có: \(\hept{\begin{cases}x-my=m+3\left(1\right)\\mx-4y=\left(-2\right)\left(2\right)\end{cases}}\)
Từ (1), suy ra \(my=\left(m+3\right)+x\)(3)
Thay (3) vào 2. Ta có: \(mx-4\left[\left(m+3\right)+x\right]=-2\)
\(\Leftrightarrow mx-\left(4m-12+x\right)=-2\)
\(\Leftrightarrow6mx=-11\)
\(\Leftrightarrow mx=\left(-11\right):6=-\frac{11}{6}\)(4)
Để hệ phương trình có nghiệm duy nhất (x;y) với x +y > 0 khi PT (4) có nghiệm duy nhất
\(\Leftrightarrow m\ne0\)
Đk để hệ pt có nghiệm duy nhất: \(\frac{2}{m}\ne\frac{-1}{2}\Leftrightarrow m\ne-4\)
Ta có: \(\hept{\begin{cases}2x-y=8\\mx+2y=m+3\end{cases}\Leftrightarrow\hept{\begin{cases}4x-2y=16\\mx+2y=m+3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4+m\right)x=m+19\\2x-y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2x-8\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=2\cdot\frac{m+19}{m+4}-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{2m+38-8m-32}{m+4}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{m+19}{m+4}\\y=\frac{6-6m}{m+4}\end{cases}}\)
Với m khác -4 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{m+19}{m+4};\frac{6-6m}{m+4}\right)\)
Ta có:\(x+y=\frac{m+19}{m+4}+\frac{6-6m}{m+4}=\frac{m+19+6-6m}{m+4}=\frac{25-5m}{m+4}\)
Để \(x+y>0\Leftrightarrow\frac{25-5m}{m+4}>0\)
TH1: \(\hept{\begin{cases}25-5m>0\\m+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}5m< 25\\m>-4\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 5\\m>-4\end{cases}}\Leftrightarrow-4< m< 5\) (tm)
TH2: \(\hept{\begin{cases}25-5m< 0\\m+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}5m>25\\m< -4\end{cases}\Leftrightarrow}\hept{\begin{cases}m>5\\m< -4\end{cases}}}\) (loại)
Vậy...