K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

kho ua

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

12 tháng 5 2021

Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..

13 tháng 4 2022

sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ 

a) Xét ΔABC vuông tại B và ΔAHB vuông tại H có 

\(\widehat{BAH}\) chung

Do đó: ΔABC\(\sim\)ΔAHB(g-g)

b) Xét ΔCED vuông tại D và ΔBEH vuông tại H có 

\(\widehat{CED}=\widehat{BEH}\)(hai góc đối đỉnh)

Do đó: ΔCED\(\sim\)ΔBEH(g-g)

Suy ra: \(\dfrac{CE}{BE}=\dfrac{CD}{BH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot CE=CD\cdot BE\)(Đpcm)

16 tháng 4 2020

a, có : ^DCH + ^HCB = 90 

^HCB + ^CBH = 90

=> ^DCH = ^HBC           (1)

có : ^DHC + ^CHN = 90

^BHN + ^NHC = 90

=> ^DHC = ^BHN  (2)

(1)(2) => tg CHD đồng dạng với tg BHN (g-g)

b, ^HMB + ^MBH = 90

^HBC + ^HBM  = 90

=> ^HMB = ^HBC

xét tg MBH và tg BCH có : ^MHB = ^CHB = 90

=> tg MHB đồng dạng với tg BHC (g-g)

b, tg MHB đồng dạng với tg BHC (câu b) => MB/BC = HB/HC (đn)             

tg CHD đồng dạng với tg BHN (câu a) => BN/DC = HB/HC (đn)

=> MB/BC = BN/DC

BC = DC do ABCD là hình vuông (gt)

=> BM = BN

29 tháng 10 2023

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA

=>BA^2=BH*BC

=>BA=6cm

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng)