Giải phương trình nghiệm nguyên: \(x+xy-x^2+y=1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có: \(x+xy-x^2+y=1\)
<=> \(\left(x+1\right)+\left(1-x^2\right)+\left(xy+y\right)=3\)
<=> (x + 1) + ( 1 + x) ( 1 - x ) + y ( x + 1 ) = 3
<=> ( x + 1 ) ( 1 + 1 - x + y ) = 3
<=> ( x + 1 ) ( 2 - x + y ) = 3
Chia trường hợp lập bảng rồi làm tiếp nhé!
em có cách khác:
\(x+xy-x^2+y=1\)
\(\Leftrightarrow xy+y=x^2+1-x\)
\(\Leftrightarrow y=\frac{x^2-x+1}{x+1}=\frac{\left(x+1\right)^2-3x}{x+1}=x+1-\frac{3x}{x+1}\)
Do y nguyên nên \(\frac{3x}{x+1}\) nguyên
\(\Rightarrow3x⋮x+1\)
\(\Rightarrow3\left(x+1\right)-3⋮x+1\)
\(\Rightarrow x+1\in\left\{1;3;-1;-3\right\}\)
Tìm được x xong thử vào tìm y nhé !