K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Giả sử $a\geq b$. Vì $b+3\vdots a$ nên đặt $b+3=at$ với $t$ là số nguyên dương.

Vì $b=at-3< a$

$\Rightarrow a(t-1)< 3$

$\Rightarrow a(t-1)\leq 2$
Mà $a,t-1$ đều là số tự nhiên nên $a(t-1)\geq 0$

Vậy $a(t-1)=0$ hoặc $a(t-1)=1$ hoặc $a(t-1)=2$
TH1: $a(t-1)=0\Rightarrow t-1=0$ (do $a>0$

$\Rightarrow t=1$. Khi đó: $b+3=a$

$a+3\vdots b\Rightarrow b+3+b\vdots b\Rightarrow b+6\vdots b$

$\Rightarrow 6\vdots b\Rightarrow b\in \left\{1; 2; 3; 6\right\}$

Nếu $b=1$ thì $a=4$ (tm)

Nếu $b=2$ thì $a=5$ (tm)

Nếu $b=3$ thì $a=6$ (tm)

Nếu $b=6$ thì $a=9$ (tm)

TH2: $a(t-1)=1\Rightarrow a=t-1=1$

$\Rightarrow a=1; t=2$.

$b+3=at=2a=2\Rightarrow b=-1$ (vô lý => loại)

TH3: $a(t-1)=2\Rightarrow (a,t-1)=(1,2), (2,1)$

$\Rightarrow (a,t)=(1,3), (2,2)$
Nếu $a=1, t=3$ thì: $b+3=at=3a=3\Rightarrow b=0$ (loại)

Nếu $a=2; t=2$ thì $b+3=at=4\Rightarrow b=1$

Vậy $(a,b)=(4,1), (5,2), (6,3), (9,6), (1,2)$ và hoán vị.

21 tháng 5 2023

Giả sử \(a\ge b\ge c\)

\(P=a+b+c=\left(a-5\right)+\left(b-4\right)+\left(c-3\right)+12\) 

\(=\sqrt{\left(a-5\right)^2}+\sqrt{\left(b-4\right)^2}+\sqrt{\left(c-3\right)^2}+12\) 

\(\ge\sqrt{\left(a-5\right)^2+\left(b-4\right)^2+\left(c-3\right)^2}+12\)

\(\ge12\)

ĐTXR \(\Leftrightarrow a=5;b=4;c=3\)

 

21 tháng 5 2023

Vậy \(min_P=12\Leftrightarrow\left(a;b;c\right)=\left(5;4;3\right)\) hoặc các hoán vị

#include <bits/stdc++.h>

using namespace std;

long long a,b,k,x,y,dem=0;

int main()

{

cin>>a>>b>>k;

for (x=1; x<=k; x++)

{

for (y=1; y<=k; y++)

{

if (a<=x*x && a<=b && a<=y*y*y && a<=b) dem++;

}

}

cout<<dem;

return 0;

}

14 tháng 9 2018

ta co: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1.\)

=> a = b = c 

\(\Rightarrow S=\frac{4a-5b+2019c}{5a-5b+2020c}=\frac{4a-5a+2019a}{5a-5a+2020c}=\frac{2018a}{2020a}=\frac{1009}{1010}\)

14 tháng 9 2018

ta co: a/b=b/c=c/a =  (a+b+c)/(b+c+a) = 1

=> a/b = 1 => a = b

b/c =  1 => b = c

=> a = b = c

\(\Rightarrow S=\frac{4a-5a+2019a}{5a-5a+2020a}=\frac{2018a}{2020a}=\frac{1009}{1010}.\)

uses crt;

var a,b,k,dem,x,y:longint;

begin

clrscr;

readln(a,b,k);

dem:=0;

for x:=1 to k do 

  for y:=1 to k do 

  if ((a<=b) and (a<=x*x) and (a<=y*y*y)) then dem:=dem+1;

writeln(dem);

readln;

end.