Tìm STN x nhỏ nhất có ba chữ số sao cho số đó chia hết cho 2 và khi chia cho 3 và 7 thì dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là A
vì số đó cộng 2 chia hết cho 5 nên số đó chia 5 dư 3
vì số đó cộng 4 chia hết cho 7 nên số đó chia 7 dư3
=>A:4;5;7 đều dư 3
=>A-3 chia hết cho 4;5;7
mà số nhỏ nhất có 3 chữ số chia hết cho 4;5;7 là 140
Thử lại 143 :4=35(dư3)
143:5=28(dư3)
143:7=20(dư 3)
(thỏa mãn đầu bài)
Vậy số cần tìm là 143
:)))^^^^
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
Gọi số cần tìm là n => (n - 1) chia hết cho 3, 4, 5 tức chia hết cho 3*4*5 = 60 (do 3, 4, 5 nguyên tố cùng nhau từng đôi một) => n - 1 = 60k => n = 60k + 1 chia hết cho 7, với k > 0.
Gọi r là số dư khi chia k cho 7 ta có k = 7m + r (1 ≤ r ≤ 6) => n = 420m + 60r + 1 chia hết cho 7. Dễ kiểm nghiệm là chỉ với r = 5 có (60r + 1) chia hết cho 7
=> n = 420m + 301
Số n nhỏ nhất ứng với m = 0 => min(n) = 301