K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

   Xét: 116 - 115 + 114 

= 114 . 112 - 114 . 11 + 114 

= 114 . ( 112 - 11 + 1 )  \(⋮\)11 ( vì 114 \(⋮\)11 )

Vậy: 116 - 115 + 114   \(⋮\)11 ( đpcm )

   Xét: 165 + 219 - 86

= ( 24 )5 + 219 - ( 23 )6

= 220 + 219 - 218

= 218 . 22 + 218 . 2 - 218 . 1

= 218 . ( 22 + 2 - 1 )

= 218 . 5

= 217 . 2 . 5

= 217 . 10 \(⋮\)10 ( vì 10 \(⋮\)10 )

Vậy:  165 + 219 - 86  \(⋮\)10  ( đpcm )

20 tháng 7 2017

165+219-86

=220+219-218=218(22+2-1

=218.5 chia hết cho 10

câu kia thì dễ rồi

12 tháng 9 2021

116 - 115 + 114

= 114 . 112 - 114 . 11 + 114 . 1

= 114 . 121 - 114 . 11 + 114 . 1

= 114 . ( 121 - 11 + 1 )

= 114 . 111

Ta thấy : 111 \(⋮\)111

\(\Rightarrow\)114 . 111  \(⋮\)111 hay 116 - 115 + 114 \(⋮\)111

nhanh nha 3 h mik cần r

a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11

b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11

15 tháng 9 2023

Help me!

6 tháng 6 2018

đề thiếu nha bn ; đề đủ là : chứng minh \(6^{2n}+10.3^n\) chia hết cho \(11\) với mọi \(n\) thuộc N* .

+ với \(n=1\) ta có : \(6^{2n}+10.3^n=6^2+10.3^1=66\) chia hết cho \(11\)

+ giả sử : khi \(n=k\) thì \(6^{2n}+10.3^n=6^{2k}+10.3^k\) chia hết cho \(11\)

ta có khi \(n=k+1\) \(\Rightarrow6^{2n}+10.3^n=6^{2\left(k+1\right)}+10.3^{k+1}\)

\(=6^2.6^{2k}+10.3^k.3=36.6^{2k}+10.3^k.36-33.10.3^k\)

\(=\left(36.\left(6^{2k}+10.3^k\right)-33.10.3^k\right)⋮11\)

\(\Rightarrow6^{2n}+10.3^n=\left(36.\left(6^{2k}+10.3^k\right)-33.10.3^k\right)⋮11\)

vậy \(6^{2n}+10.3^n\) chia hết cho \(11\) với mọi \(n\) thuộc N*

29 tháng 12 2015

\(11^6+11^5=11^5.\left(11+1\right)=11^5.12=11^5.3.4\text{ chia hết cho 4}\)

\(\Rightarrow11^6+11^5\text{ chia hết cho 4 (đpcm)}.\)

29 tháng 12 2015

 Bài tập Toán