Tìm một số tự nhiên lớn nhất có 3 chữ số biết rằng số đó chia cho 3 dư 2, cho 5 dư4 , cho 7 dư6 và chia hết cho 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ko trả lời linh tinh trên diễn đàn nếu trả lời linh tinh sẽ bị olm trừ điểm đấy
Gọi a là số cần tìm.
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia 2 dư 1 nên a + 1 chia hết cho 2
Vậy a + 1 là một số chia hết cho 6; 5; 4; 3; 2, mà số nhỏ nhất chia hết cho 6; 5; 4; 3; 2 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 1 = 944
ĐS: 944
Các số chia cho 3 dư 2 có 1 chữ số là:
5 ; 8 ; 11; 14 ; 17 ; 20 ; 23 ; 25 ; 28 ; 31; 34
Các số chia cho 5 dư 4 có 1 chữ số là:
9 ; 14 ; 19 ; 24 ; 29 ; 34 ; 39 ; 44
Các số chia cho 7 dư 6 có 1 chữ số là:
13 ; 20 ; 27 ; ; 34 ; 41 ; 48 ; 55 ; 62
Trong các số trên chỉ có số 34 mới đủ điều kiện
Vậy số cần tìm là 34 nhé
Vì chia cho 3 dư 2 ; cho 5 dư 4 và 7 dư 6 nên số đó thêm 1 đơn vị sẽ chia hết cho 3 ; 5 và 7
Mà số lớn nhất chia hết cho 3 ; 5 và 7 là 945
Vậy số cần tìm là:
945 − 11 == 944
ĐS: 944
Đáp án:
Số cần tìm là 944.
Giải thích các bước giải:
Số cần tìm chia cho 3 dư 2, chia 5 dư 4, chia 7 dư 6.
Nếu thêm số đó 1 đơn vị thì số mới chia hết cho 3, 5, 7.
Các số có ba chữ số chia hết cho 3, 5, 7 là : 105; 210; 315; ...; 945.
Số lớn nhất có ba chữ số chia hết cho 3, 5, 7 là 945.
Vậy số cần tìm là : 945 - 1 = 944.
Gọi số cần tìm là a < a là stn có 3 chữ số lớn nhất có thể >
a chia 3 dư 2 => a - 2 chia hết cho 3 => a - 2 + 3 chia hết cho 3 => a + 1 chia hết cho 3 ( 1 )
a chia 5 dư 4 => a - 4 chia hết cho 5 => a - 4 + 5 chia hết cho 5 => a + 1 chia hết cho 5 ( 2 )
a chia 7 dư 6 => a - 6 chia hết cho 7 => a - 6 + 7 chia hết cho 7 => a + 1 chia hết cho 7 ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) kết hợp thêm giả thiết
=> a + 1 thuộc BC(3, 5, 7) và a + 1 stn có 3 chữ số lớn nhất có thể
BCNN(3, 5, 7) = 3 . 5 . 7 = 105
BC(3, 5, 7) = B(105) = { 0 ; 105 ; 210 ; ... ; 840 ; 945 ; 1050 ; ... }
Theo giả thiết => a + 1 = 945 <=> a = 944
Vậy số cần tìm là 944
Gọi số cần tìm là a < a là stn có 3 chữ số lớn nhất có thể >
a chia 3 dư 2 => a - 2 chia hết cho 3 => a - 2 + 3 chia hết cho 3 => a + 1 chia hết cho 3 ( 1 )
a chia 5 dư 4 => a - 4 chia hết cho 5 => a - 4 + 5 chia hết cho 5 => a + 1 chia hết cho 5 ( 2 )
a chia 7 dư 6 => a - 6 chia hết cho 7 => a - 6 + 7 chia hết cho 7 => a + 1 chia hết cho 7 ( 3 )
Từ ( 1 ), ( 2 ) và ( 3 ) kết hợp thêm giả thiết
=> a + 1 thuộc BC(3, 5, 7) và a + 1 stn có 3 chữ số lớn nhất có thể
BCNN(3, 5, 7) = 3 . 5 . 7 = 105
BC(3, 5, 7) = B(105) = { 0 ; 105 ; 210 ; ... ; 840 ; 945 ; 1050 ; ... }
Theo giả thiết => a + 1 = 945 <=> a = 944
Vậy số cần tìm là 944
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N* ; a là số tự nhiên có 3 chữ số
Vì a chia cho 3 dư, cho 5 dư 4, cho 7 dư 6 nên ta có : \(\hept{\begin{cases}a-2⋮3\\a-4⋮5\\a-6⋮7\end{cases}\Rightarrow\hept{\begin{cases}a-2+3⋮3\\a-4+5⋮5\\a-6+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}a+1⋮3\\a+1⋮5\\a+1⋮7\end{cases}}}\)
\(\Rightarrow\)a+1\(\in\)BC(3,5,7)
Ta có : 3=3
5=5
7=7
\(\Rightarrow\)BCNN(3,5,7)=3.5.7=105
\(\Rightarrow\)BC(3,5,7)=B(105)={0;105;210;315;...;945;...}
\(\Rightarrow\)a+1\(\in\){-1;104;209;314;...;944;...}
Mà a chia hết cho 6 và a là số lớn nhất có 3 chữ số
\(\Rightarrow\)a=944
Vậy số cần tìm là 944