So (-3)^20+1 co phai la tich cua 2 so nguyen lien tiep khong?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nhận xét: tích của hai số tự nhiên liên tiếp chia cho \(3\)chỉ có thể có số dư là \(0\)hoặc \(2\).
Chứng minh:
Giả sử tích đó là \(a\left(a+1\right)\).
Nếu \(a=3k\)hoặc \(a=3k+2\)thì tích \(a\left(a+1\right)⋮3\).
Nếu \(a=3k+1\)thì \(a\left(a+1\right)=\left(3k+1\right)\left(3k+2\right)=9k^2+9k+2\)chia cho \(3\)dư \(2\).
Do đó ta có đpcm.
Mà ta có \(3^{50}+1\)chia cho \(3\)dư \(1\)do đó \(3^{50}+1\)không thể là tích của hai số tự nhiên liên tiếp.
Tích của 2 số tự nhiên liên tiếp hoặc là chia hết cho 3, hoặc chia cho 3 dư 2 (bạn tự chứng minh).
Vì số 350 + 1 chia cho 3 dư 1 nên nó không thể là tích của hai số tự nhiên liên tiếp
Ta gọi :3SND lần lượt là\(N,N+1,N+2\left(N\in Z\right)\)
\(N\left(N+1\right)\left(N+2\right)=\left(N^2+N\right)\left(N+2\right)=N^3+2N^2+N^2+2N=N^3+3N^2+2N\)
\(N^3< N^3+3N^2+2N< N^3+3N^2+3N+1\)
\(\Rightarrow N^3< N^3+3N^2+2N< \left(N+1\right)^3\left(1\right)\)
Vì \(N\)là SND nên từ \(\left(1\right)\)
Ta có:\(n\left(n+1\right)\left(n+2\right)\)ko là LP của 1 STN
Có \(9^{25}+1=9^{25}-1+2=9^{25}-1^{25}+2\)
Có công thức : \(x^n-y^n⋮\left(x-y\right)\)
\(\Rightarrow9^{25}-1^{25}⋮8;2⋮2\)
Vậy \(9^{25}+1⋮2\)và có thể là tích 2 số tự nhiên liên tiếp
Vì 2A = 2.1.3.5.....2011
Dễ thấy 2A chia hết cho 2 mà không chia hết cho 4
=> 2A không là bình phương của 1 số nguyên nào
VÌ 2A là chẵn => 2A - 1 lẻ, mà 2A- 1 ko chia hết cho 3, 5, 7,...,2011
( vì 2A chia hết cho các số đó)
Tương tự vậy ta thấy ngay 2A-1, 2A không là bình phương cảu bất kì số nguyên nào
số tự nhiên liên tiếp thì bao giờ cũng có 1 số chẵn vì vậy mà tích của chúng là 1 số chẵn mà 1995 là 1 số lẻ do vậy không phải là tích của 3 số tự nhiên liên tiếp.
Nhớ cho đúng nha