(x+1)+(x+2)+...+(x+2020)=0
Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
Ta có: \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+x\left(7x-6\right)=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+x+7x^2-6x=0\)
\(\Leftrightarrow x^2+7x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
`(1/2x-7)(x+2)=0`
`<=>` \(\left[ \begin{array}{l}\dfrac12x-7=0\\x+2=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}\dfrac12x=7\\x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=14\\x=-2\end{array} \right.\)
Vậy `x=14` hoặc `x=-2`
Ta có: \(\left(\dfrac{1}{2}x-7\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-7=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=14\\x=-2\end{matrix}\right.\)
x(x+1)-(x-2)(x+1)=0
\(\left(x+1\right)\left(x-x+2\right)=0\\ \left(x+1\right)\cdot2=0\\ =>x+1=0\\ x=0-1\\ x=-1\)
|x+1|>=0 với mọi x
=>2|x+1|>=0 với mọi x
mà (x+y)^2>=0 với mọi x,y
nên 2|x+1|+(x+y)^2>=0 với mọi x,y
Dấu = xảy ra khi x+1=0 và x+y=0
=>x=-1 và y=1
\(\dfrac{1}{3}x+\dfrac{2}{3}\left(x-1\right)=0\\ \dfrac{1}{3}x+\dfrac{2}{3}x-\dfrac{2}{3}=0\\ x=\dfrac{2}{3}\)
a: (x-1)(x+2)(-x-3)=0
=>(x-1)(x+2)(x+3)=0
=>\(\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
b: (x-7)(x+3)<0
TH1: \(\left\{{}\begin{matrix}x-7>0\\x+3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>7\\x< -3\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-7< 0\\x+3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 7\\x>-3\end{matrix}\right.\)
=>-3<x<7
mà x nguyên
nên \(x\in\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
\(\Leftrightarrow2x^2-11x+5-2x^2+10x=25\Leftrightarrow-x=20\Leftrightarrow x=-20\)
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
ĐK:\(x\ge0\)
\(\left(x^2-1\right)\sqrt{x}=0\Leftrightarrow\left(x-1\right)\left(x+1\right)\sqrt{x}=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\sqrt{x}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(ktm\right)\\x=0\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
Ủa lớp 7 sao học căn r nè
(x + 1) + (x + 2) + ... + (x + 2020) = 0
=> x + 1 + x + 2 + ... + x + 2020 = 0
=> 2020x + [(1 + 2020) + (2 + 2019) + ... + (1010 + 1011) = 0
=> 2020x + (2021 + 2021 + ... + 2021) = 0
=> 2020x + 2021.1010 = 0
=> 2020x + 2041210 = 0
=> 2020x = -2041210
=> x = 2021/2