Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích đa thức thành nhân tử rùi làm!!!
54645475676575687687697645452524367567565876
( x - 1 )( x + 2 ) - x - 2 = 0
<=> ( x - 1 )( x + 2 ) - ( x + 2 ) = 0
<=> ( x + 2 )( x - 2 ) = 0
<=> x = ±2
( 2x - 7 )3 = 8( 7 - 2x )2
<=> ( 2x - 7 )3 - 8( 2x - 7 )2 = 0
<=> ( 2x - 7 )2( 2x - 15 ) = 0
<=> x = 7/2 hoặc x = 15/2
: 1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15
= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15
= (x² + 8x + 7).(x² + 8x + 15) + 15
= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được.
(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2).
Thay (1) vào (2) ta được: đa thức trên được phân tích thành:
(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10).
Lưu ý: phương pháp này có tên là "Đặt ẩn phụ".
2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1)
= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1)
= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ]
= (x² - x + 1).(x^5 + x^4 - x² - x - 1).
3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y²
= (x^4 + 4x²y² + 4y^4) - (2xy)²
= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ]
= (x² + 2xy + 2y²).(x² - 2xy + 2y²)
4/ x^5 + x + 1 = x^5 + x + 1 + x² - x²
= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1)
= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ]
= (x² + x + 1).(x³ - x² + 1).
5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1)
= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1)
= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1).
6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)²
= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ]
= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ]
= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ]
= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z).
Mong bạn sẽ hiểu
b) \(\Leftrightarrow5x^2-6x+1=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow x=\frac{1}{5}\) hoặc x = 1
c) \(\Leftrightarrow x^2+4x-21-x^2-4x+5=0\Leftrightarrow-16=0\) (vô lí) => PT vô nghiệm
d) \(\Leftrightarrow x^2+3x-10=0\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\)x = 2 hoặc x = -5
e) \(\Leftrightarrow x\left(x-2\right)=0\)<=> x = 0 hoặc x = 2
TH1:x<1
=>x-1<0;x-2<0
=>(x-1)(x-2)>0
Vì (x-1)(x+2)<0
=>x+2>0 =>x>-2
=>-2<x<1
TH2:x>1=>x-1>0
(x-1)(x-2)>0 =>x-2>0
=>x>2
(x-1)(x+2)<0 => x+2<0
=>x<-2(vô lí)
=>x>2
Vậy -2<x<1 hoặc x>2
a) mik làm dưới kia rồi nha
b ) \(x^2-8x+9=-x-1\)
\(=>x^2-8x+9+x+1=0\)
\(=>x^2-7x+10=0\)
\(=>\left(x+5\right)\left(x+2\right)=0\)
\(=>\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}}=>\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
Bạn muốn biết ( x + 5 ) (x +2 ) ở đâu ra thì nhân vào nha
a) x(x2 - 2x- 3)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-2x-3=0\end{cases}}\)
- với x2-2x-3=0
\(\Rightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\).Vậy pt có 3 nghiệm là x={0;-1;3}
b)x2-8x+9= -x-1
=>x2-8x+9+x+1=0
=>x2-(8x-x)+(9+1)=0
=>x2-7x+10=0
=>(x-2)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\).Vậy tập nghiệm của pt là S={2;5}
x(x+1)-(x-2)(x+1)=0
\(\left(x+1\right)\left(x-x+2\right)=0\\ \left(x+1\right)\cdot2=0\\ =>x+1=0\\ x=0-1\\ x=-1\)
=>(x+1)(x-x+2)=0
=>x+1=0
=>x=-1