Cho tam giác ABC (AB < AC); BC = 16cm. Hai đường trung tuyến BN, CM cắt nhau tại O (M thuộc AB, N thuộc AC).
a) Tính độ dài MN. Tứ giác MNCB là hình gì? Vì sao?
b) Trên OB và OC lần lượt lấy điểm I, K sao cho I là trung điểm của OB, K là trung điểm của OC. Chứng minh: tứ giác MNKI là hình bình hành
c) Lấy điểm P đối xứng với điểm O qua M, Điểm Q đối xứng với O qua điểm N. Chứng minh: PQ = BC.
(CẦN LỜI GIẢI CHI TIẾT VÀ HÌNH VẼ CHÍNH XÁC)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=\dfrac{16}{2}=8\left(cm\right)\)(1)
hay BMNC là hình thang
b: Xét ΔOBC có
I là trung điểm của OB
K là trung điểm của OC
Do đó: IK là đường trung bình của ΔOBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra MN//IK và MN=IK
hay MNKI là hình bình hành