K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2020

a, xét tam giác AMB và tam giác DMC có : MA = MD (gt)

MC = MB do M là trung điểm của BC (gt)

góc DMC = góc BMA (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

b,  tam giác AMB = tam giác DMC (câu a)

=> góc DCM = góc MAB (đn) mà 2 góc này so le trong

=> DC // AB (đl)

c, 

12 tháng 2 2020

A B C M D

https://olm.vn/thanhvien/cuongktl

SÉT \(\Delta AMC\)\(\Delta DMB\)

\(AM=DM\left(gt\right)\)

\(\widehat{AMC}=\widehat{DMB}\left(đđ\right)\)

\(MC=MB\left(gt\right)\)

\(\Rightarrow\Delta AMC=\Delta DMB\left(C-G-C\right)\)

TA CÓ\(\Delta MAB+\Delta AMC=\Delta ABC\)

\(\Delta DMB+\Delta MDC=\Delta DCB\)

MÀ \(\Delta AMC=\Delta DMB\left(cmt\right)\)

      \(\Delta MAB=\Delta MDC\left(cmt\right)\)

\(\Rightarrow\Delta ABC=\Delta DCB\)

\(\Rightarrow\widehat{A}=\widehat{D}=90^o\)(HAI GÓC TƯƠNG ỨNG)

VẬY \(\Delta BDC\)TAM GIÁC VUÔNG TẠI D

16 tháng 12 2023

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Ta có: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

Ta có: AB//CD

AB\(\perp\)AC

Do đó: CD\(\perp\)CA

Xét ΔABC vuông tại A và ΔCDA vuông tại C có

AB=CD

AC chung

Do đó: ΔABC=ΔCDA

c: Ta có: ΔABC=ΔCDA

=>BC=DA

Xét ΔMCA và ΔMBD có

MC=MB

\(\widehat{CMA}=\widehat{BMD}\)(hai góc đối đỉnh)

MA=MD

Do đó: ΔMCA=ΔMBD

=>\(\widehat{MCA}=\widehat{MBD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

Ta có: AC//BD

AC\(\perp\)CD

Do đó: DC\(\perp\)DB

=>ΔDBC vuông tại D

17 tháng 1 2021

*Tự vẽ hình

a) Xét tam giác MAB và MDC có :

   MA=MD(GT)

   BM=CM(GT)

   \(\widehat{BMA}=\widehat{DMC}\left(đđ\right)\)

=> Tam giác MAB=MDC ( c.g.c )

b) Mình nghĩ đề bài sửa thành CM AB//CD thì có vẻ đúng hơn

Có : Tam giác MAB=MDC (cmt)

=> \(\widehat{BAD}=\widehat{ADC}\)

Mà 2 góc này ở vị trí so le trong

=> AB//CD

- Xét tam giác ABD và CDA có :

   AD-cạnh chung 

   \(\widehat{ADC}=\widehat{DAB}\left(tgMAB=MDC\right)\)

   AB=BC(tgMAB=MDC)

=> 2 tam giác này bằng nhau

c) Vâng, như đề bài thì chúng ta đã có tam giác ABC vuông tại A nên khỏi cần chứng minh đâu :)

#Hoctot

#\(N\)

`a,` Xét Tam giác `AMB` và Tam giác `CME` có:

`AM = ME (g``t)`

\(\widehat{AMB}=\widehat{CME}\) `(2` góc đối đỉnh `)`

`MB = MC (g``t)`

`=>` Tam giác `AMB =` Tam giác `CME (c-g-c)`

`b,` Vì Tam giác `AMB =` Tam giác `CME (a)`

`-> AB = CE (2` cạnh tương ứng `)`

Xét Tam giác `ABH` và Tam giác `DBH` có:

`HA = HD (g``t)`

\(\widehat{BHA}=\widehat{BHD}=90^0\) 

`BH` chung

`=>` Tam giác `ABH =` Tam giác `DBH (c-g-c)`

`=> AB = BD (2` cạnh tương ứng `)`

Mà `AB = CE -> BD = CE`

`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:

`HA = HD (g``t)`

\(\widehat{AHM}=\widehat{DHM}=90^0\)  

`HM` chung

`=>` Tam giác `AMH =` Tam giác `DMH (c-g-c)`

`=> AM = DM (2` cạnh tương ứng `)`

Xét Tam giác `AMD` có: `AM = DM`

`->` Tam giác `AMD` là tam giác cân.

 

loading...

Mình bổ sung thêm hình ạ ._. nãy k sửa kịp á.

7 tháng 12 2017

a) Vì M là trung điểm BC suy ra BM =CM(1)

Xét tam giác BMN và tam giác CMA có :

BM=CM(1)

Góc BMN = Góc CMA(gt)

MA=MN(gt)

Suy ra tam giác BMN = tam giác CMA (đfcm) 

18 tháng 12 2023

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

=>AB=DC
b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)

MC=MB

Do đó: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//AC

18 tháng 12 2023

em cảm ơn nhiều ạ

7 tháng 12 2016
Có ai giúp mk với