K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2019

Chọn A

Ta áp dụng đạo hàm của 1 tích :

y ' = ( x ) ' . c osx +​ x. (cosx)'  =1.cosx +​ x. (- sinx ) = c osx- x.sin x

3 tháng 7 2019

vì: sin bình phương x= 1-cos bình phương x

vậy y = (1-cos bình phương x) nhân cos c

=cos x nhân cos mũ ba x

đặt a= cos x (đk : -1<= a<= 1)

khi đó y =a-a^3

đạo hàm = -3a^2=1

theo bản biến thiên thì trên khoảng -1 đến 1 thì giá trị y đạt dược lớn nhất tại a=căn ba trên 3

a=căn 3 trên ba => cos x=căn ba trên ba => x=........

3 tháng 7 2019

Có cách nào khác ko, e chưa học đạo hàm. Mới lên 11 thôi 😭

a: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=-x\cdot cos\left(-x\right)=-x\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

b: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=5\cdot sin^2\left(-x\right)+1=5\cdot sin^2x+1=f\left(x\right)\)

=>f(x) chẵn

c: TXĐ: D=R

Với mọi x thuộc D thì -x cũng thuộc D

\(f\left(-x\right)=sin\left(-x\right)\cdot cos\left(-x\right)=-sinx\cdot cosx=-f\left(x\right)\)

=>f(x) lẻ

 

16 tháng 4 2017

Đáp án B

Do y = x cos x  nên y ' = cos x − x sin x ⇒ y ' ' = − sin x − sin x − x cos x = − 2 sin x − x cos x  

Như thế 2 cos x − y ' = 2 x sin x ,     x y ' ' + y = − 2 x sin x  

Vậy 2 cos x − y ' + x y ' ' + y = 0

4 tháng 7 2019

9 tháng 1 2018

Đáp án C.

17 tháng 8 2023

tham khảo:

a)\(y'=xsin2x+sin^2x\)

\(y'=sin^2x+xsin2x\)

b)\(y'=-2sin2x+2cosx\\ y'=2\left(cosx-sin2x\right)\)

c)\(y=sin3x-3sinx\)

\(y'=3cos3x-3cosx\)

d)\(y'=\dfrac{1}{cos^2x}-\dfrac{1}{sin^2x}\)

\(y'=\dfrac{sin^2x-cos^2x}{sin^2x.cos^2x}\)

20 tháng 3 2021

Cách này hơi dài chút, nhưng nếu nghĩ ra cách hay hơn mình sẽ đề xuất nhe!

\(=\int\sin^5x.\left(2\sin x\cos x\right)^3.2xdx=16\int x.\sin^8x\cos^3xdx\)

\(\left\{{}\begin{matrix}u=x\\dv=\sin^8x.\cos^3xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\int\sin^8x.\cos^3xdx\end{matrix}\right.\)

\(I_1=\int\sin^8x\cos^3xdx=\int\sin^8x.\cos^2x.\cos xdx=\int\sin^8x.\left(1-\sin^2x\right)\cos xdx\)

\(t=\sin x\Rightarrow dt=\cos xdx\Rightarrow\int\sin^8x\left(1-\sin^2x\right)\cos xdx=\int(t^8-t^{10})dt=\dfrac{1}{9}t^9-\dfrac{1}{11}t^{11}=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\)

\(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\end{matrix}\right.\)

\(\Rightarrow\dfrac{I}{16}=x.\left(\dfrac{1}{9}\sin^9x-11\sin^{11}x\right)-\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx\)

\(I_2=\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx=\dfrac{1}{9}\int\sin^9xdx-\dfrac{1}{11}\int\sin^{11}xdx\)

À thế này là xong rồi còn gì :) Bạn tự làm nốt nhé